

Copyright © Acorn Computers Limited 1989

Neither the whole nor any part of the information contained in, nor the product described in this Guide may be adapted or reproduced in any material form except with the prior written approval of Acorn Computers Limited.

The products described in this manual are subject to continuous development and improvement. All information of a technical nature and particulars of the products and their use (including the information and particulars in this Manual) are given by Acorn Computers Limited in good faith. However, Acorn Computers Limited cannot accept any liability for any loss or damage arising from the use of any information or particulars in this manual, or any incorrect use of the products. All maintenance and service on the products must be carried out by Acorn Computers' authorised dealers or Approved Service Centres. Acorn Computers Limited can accept no liability whatsoever for any loss or damage caused by service, maintenance or repair by unauthorised personnel.

All correspondence should be addressed to: Customer Service Acorn Computers Limited Fulbourn Road Cherry Hinton Cambridge CB1 4JN

Information can also be obtained from the Acorn Support Information Database (SID). This is an on-line viewdata system available to registered SID users. Initially, access SID on Cambridge (0223) 243642: this will allow you to inspect the system and use a response frame for registration.

ACORN and ECONET are trademarks of Acorn Computers Limited.

IBM is a trademark of International Business Machines Corporation.

Within this publication, the term 'BBC' is used as an abbreviation for 'British Broadcasting Corporation'.

Published September 1989 Published by Acorn Computers Technical Publications Department Part number 0480,050 Issue 1

A 3000 Contents

System description	5
Introduction	5
General	5
The I/O system	6
The keyboard and mouse	13
Floppy disc drive	19
Power supply	19
Links	20
Plugs	21
Sockets	21
Changes between Issue A and Issue 1 PCBs	23
A3000 expansion	25
Internal expansion	25
External expansion	29
Disassembly and reassembly	31
Fault diagnosis	33
Introduction	33
Checking a 'dead' computer	34
Functional tests	36
Main computer tests	38
Opgrade tests	42
Main PCB fault diagnosis & repair	45
Introduction	45
System failure	46
Video faults	46
Test ROMs	47 48
Parts lists	51
Annondiy A. Carial nart laanbaak nlug	5
	55
Appendix B: Earth continuity testing	57
Drawings	

A3000 final assembly diagram User Port / MIDI circuit diagram Internal upgrade diagram External podule fixing diagram

Main PCB circuit diagram)Main PCB top assembly diagram)boundMain PCB bottom assembly diagram)separately

A 3000 System description

Introduction

The A3000 computer is built around the ARM chip set, comprising the Acorn Risc Machine (ARM) itself, the Memory Controller (MEMC), Video Controller (VIDC)

and Input Output Controller (IOC). A block diagram of the A3000 is shown below:

General

The ARM IC is a pipelined, 32-bit reduced instruction set microprocessor which accepts instructions and manipulates data via a high speed 32-bit data bus and 26-bit address bus, giving a 64 Mbyte uniform address space. The ARM supports virtual memory systems using a simple but powerful instruction set with good high-level language compiler support.

MEMC acts as the interface between the ARM, the Video and I/0 Controllers, Read-Only Memory (ROM) and Dynamic memory devices (DRAM), providing all the critical system timing signals including processor clocks.

1 or 2 Mbyte of DRAM is connected to MEMC which provides all signals and refresh operations. A Logical to Physical Translator maps the Physical Memory into a 32 Mbyte Logical address space (with three levels of protection) allowing Virtual Memory and Multi-Tasking operations to be implemented. Fast page mode DRAM accesses are used to maximise memory bandwidth. VIDC requests data from the RAM when required and buffers it in one of three FIFOs before using it. Data is requested in blocks of four 32-bit words, allowing efficient use of paged-mode DRAM without locking the system data bus for long periods.

MEMC supports Direct Memory Access (DMA) operations with a set of programmable DMA Address Generators which provide a circular buffer for Video data, a linear buffer for Cursor data and a double buffer for Sound data.

The Input Output Controller (IOC) controls the I/O bus and expansion cards, and provides basic functions such as the keyboard interface, system timers, interrupt masks and control registers. It supports a number of different peripheral cycles, and all I/O accesses are memory mapped.

VIDC takes video data from memory under DMA control, serialises it and passes it through a colour lookup palette, then converts it to analogue signals for driving the CRT guns. VIDC also controls all the display timing parameters and controls the position and pattern of the cursor sprite. In addition, it

incorporates an exponential Digital to Analogue Converter (DAC) and stereo image table for the generation of high quality sound from data in the DRAM.

VIDC is a highly programmable device, offering a very wide choice of display formats. The colour look-up palette which drives the three on-chip DACs is 13 bits wide, offering a choice from 4096 colours or an external video source.

The cursor sprite is 32 pixels wide and any number of rasters high. Three simultaneous colours (again from a choice of 4096) are supported and any pixel can be defined as transparent, making possible cursors of many shapes. It can be positioned anywhere on the screen.

The sound system implemented on the device can support up to 8 channels, each with a separate stereo position.

The I/O system

The I/O system is controlled by the I/O Controller (IOC) and the Memory Controller (MEMC). The I/O Bus supports all the internal peripherals and the expansion cards. Details of the expansion bus can be found in the chapter entitled 'A3000 expansion'.

This section is intended to give the reader a general understanding of the A3000 I/O system and should not be used to program the I/O system directly. The implementation details are liable to change at any time and only the published software interfaces should be used to manipulate the I/O system. Future systems may have a different implementation of the I/O system, and in particular the addresses (and number) of expansion card locations may move. For this reason, and to ensure that any device may be plugged into any slot, all driver code for expansion cards must be relocatable. References to the direct expansion card addresses should never be used. It is up to the machine operating system, in conjunction with the expansion card ID, to determine the address at which an expansion card should be accessed. To this extent, some of the following sections are for background information only.

Service Manual

System architecture

The I/O system (which includes expansion card devices) consists of a 16-bit data bus (BD[0:15]) a buffered address bus (LA[2:21]) and various control and timing signals. The I/O data bus is independent of the main 32-bit system data bus, being separated from it by bidirectional latches and buffers. In this way the I/O data bus can run at much slower speeds than the main system bus to cater for slower peripheral devices. The latches between the two buses, and hence the I/O bus timing are controlled by IOC. IOC caters for 4 different cycle speeds (slow, medium, fast and synchronous).

A typical A3000 I/O system is shown in the diagram on the previous page. For clarity, the data and address buses are omitted from this diagram.

System memory map

The system memory map is defined by the MEMC, and is shown below. Note that all system components, including I/O devices, are memory mapped.

I/O space memory map

This IOC-controlled space has allocation for simple expansion cards and MEMC expansion cards.

Data bus mapping

The I/O data bus is 16 bits wide (8 bits wide for the internal expansion card interface). Bytewide accesses are used for 8-bit peripherals. The I/O data bus (BD[0: 15]) connects to the main system data bus (D[0:31]) via a set of bidirectional data latches.

The mapping of the BD[0:15] bus onto the D[0:31] bus is as follows:

During a WRITE (ie ARM to peripheral) D[16:31] is mapped to BD[0:15].

During a READ (ie peripheral to ARM) BD[0:15] is mapped to D[0:15].

Byte accesses

To access bytewide expansion cards, byte instructions are used. A byte store instruction will place the written byte on all four bytes of the word, and will therefore correctly place the desired value on the lowest byte of the I/O bus. A byte or word load may be used to read a bytewide expansion card into the lowest byte of an ARM register.

Half-word accesses

.

To access a 16-bit wide expansion card, half-word instructions are used. When storing, the half-word is placed on the upper 16 bits, D[16:31]. To maintain upwards compatibility with future machines, half-word stores replicate the written data on the lower half-word, D[0:15]. When reading, the upper 16 bits are undefined.

Expansion card identification

It is important that the system is able to identify what expansion cards (if any) are present, and where they are. This is done by reading the Podule (expansion card) Identification (PI) byte, or bytes, from the Podule Identification Field.

System memory map

Read	Write	Hex address 3FFFFFF
ROM (high)	Logical to Physical address translator	
		3800000
POM (low)	DMA address generators	3600000
KOM (IOW)	Video Controller	3400000
Input/Output	Controllers	3000000
Physically mapped RAM Logically mapped RAM		2000000
		0000000

Service Manual

I/O address memory mapping

All I/O accesses are memory mapped. IOC is connected as detailed in this table:

IOC	ARM
CS	LA[21]
T[1]	LA[20]
T[0]	LA[19]
B(2]	LA[18]
B[1]	LA[17]
B[0]	LA[16]

Internal register memory map

Address	Read	Write
3200000H	Control	Control
3200004H	Serial Rx Data	Serial Tx Data
3200008H	-	-
320000CH	-	-
3200010H	IRQ status A	-
3200014H	IRQ request A	IRQ clear
3200018H	IRQ mask A	IRQ mask A
320001CH	-	-
3200020H	IRQ status B	-
3200024H	IRQ request B	-
3200028H	IRQ mask B	IRQ mask B
320002CH	-	-
3200030H	FIQ status	-
3200034H	FIQ request	-
3200038H	FIQ mask	FIQ mask
320003CH	-	-
3200040H	T0 count Low	T0 latch Low
3200044H	T0 count High	T0 latch High
3200048H	-	T0 go command
320004CH	-	T0 latch command
3200050H	T1 count Low	T1 latch Low
3200054H	T1 count High	T1 latch High
3200058H	-	T1 go command
320005CH	-	T1 latch command
3200060H	T2 count Low	T2 latch Low
3200064H	T2 count High	T2 latch High
3200068H	-	T2 go command
320006CH	-	T2 latch command
3200070H	T3 count Low	T3 latch Low
3200074H	T3 count High	13 latch High
3200078H	-	T3 go command
320007CH	-	T3 latch command

Peripheral address

Cycle Type	Bk	Base Address	IC	Use
Type Fast Sync Sync Med. Med. Med. Fast Fast Slow Med. Fast Sync Slow	B 12355555556444444	Address &3310000 &33A0000 &32D0000 &32D0020 &32D0028 &32D0028 &3350010 &3350010 &3350040 - &3224000 &33240000 &3220000	IC 1772 6854 6551 HD63463 HD63463 HD63463 HD63463 HC374 HC574 HC574 HC574 - Podule Podule Podule Podule Podule	Use Floppy disc controller Econet controller* Serial line controller* Hard disc** Hard disc** Hard disc** Printer Data Latch B Latch A Reserved Internal expansion Internal expansion Internal expansion External expansion External expansion
⊢ast Svnc	4	&3340000 &33C0000	Podule Podule	External expansion
Fast Sync	4 4	&32C0000 &3340000 &33C0000	Podule Podule Podule	External expansion External expansion External expansion
Slow	7	&3270000	Podule	Extended ext expansion

If fitted

**not fitted

I/O programming details

External latch A

External Latch A is a write only latch used to control parts of the floppy disc sub-system:

External latch B

The External Latch B is a write only register shared between several users who must maintain a consistent RAM copy. Updates must be made with IRQ disabled.

Interrupts

The I/O system generates two independent interrupt requests, IRQ and FIQ. Interrupt requests can be caused by events internal to IOC or by external events on the interrupt or control port input pins.

The interrupts are controlled by four types of register: status, mask, request and clear. The status registers reflect the current state of the various interrupt sources. The mask registers determine which sources may generate an interrupt. The request registers are the logical AND of the status and mask registers and indicate which sources are generating interrupt requests to the processor. The clear register allows clearing of interrupt requests where appropriate. The mask registers are undefined after power up.

The IRO events are split into two sets of registers, A and B. There is no priority encoding of the sources. Internal Interrupt Events:

- Timer interrupts TM[0:1]
- Power-on reset POR
- · Keyboard Rx data available SRx
- · Keyboard Tx data register empty STx
- Force interrupts 1.

External Interrupt Events

- IRQ active low inputs IL[0:7] wired as (0-7 respectively) PFIQ, SIRQ, SLC1,NOT USED, DCIRQ, PIRQ, PBSY and RII.
- · IRQ falling-edge input IF wired as PACK
- IRQ rising-edge input IR wired as VFLY
- FIQ active high inputs FH[0:1] wired as FFDQ and FFIQ
- FIQ active low input FL wired as EFIQ
- Control port C[3:5].

IRO status A

Bit	Name	Function	
0	PBSY	This bit indicates that the printer is busy.	
1	RII	This bit indicates that a Ringing Indication has been detected by the serial line interface.	
2	Printer Ack	This bit indicates that a printer acknowledgement bit has been received.	
3	Vertl Flyback	This bit indicates that a vertical flyback has commenced.	
4	Power-on reset	This bit indicates that a power-on reset has occurred.	
[5:6]	Timer 0 and Timer 1 events	These bits indicate that events have occurred. Note: latched interrupt.	
7	Force	This bit is used to force an IRQ request. It is usually owned by the FIQ owner and is used to downgrade FIQ requests into IRQs.	

Service Manual

IRQ status B

Bit	Name	Function
0	Podule FIQ req	This bit indicates that a Podule FIQ request has been received. It should usually be masked OFF.
1	Snd buffr swap	This bit indicates that the MEMC sound buffer pointer has been relocated.
2	Serial line ctrlr	This bit indicates that 65C51 serial line controller interrupt has occurred.
3	H disc interrupt	This bit indicates that a hard disc interrupt has occurred.
4	Disc changed Interrupt	This bit indicates that the floppy disc has been removed.
5	Pod. interr req	This bit indicates that a Podule IRQ request has occurred.
6	Keyb Tx event	This bit indicates that the keyboard transmit register is empty and may be reloaded.
7	Keybd Rx event	This bit indicates that the keyboard reception register is full and may be read.

Interrupt status FIQ

Bit	t Name Function	
0	Floppy disc data request	This bit indicates that a Floopy Disc Data Request has occurred.
1	Floppy disc interrupt request	This bit indicates that a Floppy Disc Interrupt Request has occurred.
2	Econet Interrupt request	This bit indicates that an Econet Interrupt Request has occurred.
3-5	C[3:5]	See IOC data sheet for details.
6	Podule FIQ req	This bit indicates that a Podule FIQ Request has occurred.
7	Force	This bit allows an FIQ interrupt request to be generated.
:		

Control port

The control register allows the external control pins C[0: 5] to be read and written and the status of the PACK and VFLY inputs to be inspected. The C[0:5] bits manipulate the C[0:5] I/0 port. When read, they reflect the current state of these pins. When written LOW the output pin is driven LOW. These outputs are open-drain, and if programmed HIGH the pin is undriven and may be treated as an input.

On reset all bits in the control register are set to 1.

Bit	Name	Function
C[7]	VFLYBK and Test Mode	Allows the state of the (VFLYBK) signal to be inspected. This bit will be read HKGH during vertical flyback and LOW during display. See VIDC datasheet for details. This bit MUST be programmed HKGH to select normal operation of the chip.
_C[6]	PACK & Test Mode	Allows the state of the parallel printer acknowledge input to be inspected. This bit MUST be programmed HIGH to select normal operation of the the chip.
C[5]	SMUTE	This controls the muting of the internal speaker. It is programmed HIGH to mute the speaker and LOW to enable it. The speaker is muted on reset.
C[4]		Available on the Auxiliary VO connector.
C[3]		Reserved and should be programmed HIGH.
C[2]	READY	Used as the floppy disc (READY) input and must be programmed HIGH.
C[1:0]	SDA, SCL the I2C bus	The C[0:1] pins are used to implement the bi-directional serial I2C bus to which the Real Time Clock and battery-backed RAM are connected.

Service Manual

The sound system

The sound system is based on the VIDC stereo sound hardware. External analogue anti-alias filters are used which are optimised for a 20 kHz sample rate. The high quality sound output is available at a 3.5mm stereo jack socket at the rear of the machine which will directly drive personal stereo headphones or alternatively an amplifier and speakers. Two internal speakers are fitted, to provide stereo audio.

VIDC sound system hardware

VIDC contains an independent sound channel consisting of the following components: A four-word FIFO buffers sixteen 8-bit sound samples with a DMA request issued whenever the last byte is consumed from the FIFO. The sample bytes are read out at a constant sample rate programmed into the 8-bit Audio Frequency Register. This may be programmed to allow samples to be output synchronously at any integer value between 3 and 255 microsecond intervals.

The sample data bytes are treated as sine plus seven-bit logarithmic magnitude and after exponential digital to analogue conversion, de-glitching and sign-bit steering, are output as a current at one of the audio output pins to be integrated and filtered externally.

VIDC also contains a bank of eight stereo image position registers each of three bits. These eight registers are sequenced through at the sample rate with the first register synchronised to the first byte clocked out of the FIFO. Every sample time is divided into eight time slots and the three bit image value programmed for each register is used to pulse width modulate the output amplitude between the LEFT and RIGHT audio current outputs in multiples of time slot subdivisions. This allows the signal to be spatially positioned in one of seven stereo image positions.

MEMC sound system hardware

MEMC provides three internal DMA address registers to support Sound buffer output; these control the DMA operations performed following Sound DMA requests from VIDC. The registers allow the physical addresses for the START, PNTR (incremental) and END buffer pointers to a block of data in the lowest half Megabyte of physical RAM to be accessed. These operate as follows: programming a 19-bit address into the PNTR register sets the physical address from which sequential DMA reads will occur (in multiples of four words) and programming the END pointer sets the last physical address of the buffer. Whenever the PNTR register increments up to this END value the address programmed into the START register is automatically written into the PNTR register for the DMA to continue with a new sample buffer in

memory. A Sound Buffer Interrupt (SIRQ) signal is generated when the reload operation occurs which is processed by IOC as a maskable interrupt (IRQ) source.

The Memory Controller also includes a sound channel enable/disable signal. Because this enable/disable control signal is not synchronised to the sound sampling requests will normally be disabled after the waveforms which are being synthesised have been programmed to decay to zero amplitude; the last value loaded into the Audio data latch in the VIDC will be output to each of the Stereo image positions at the current Audio Sample rate.

IOC sound system hardware

IOC provides a programmed output control signal which is used to turn the internal speaker on or off, as well as an interrupt enable/status/reset register interface for the Sound Start Buffer reload signal generated by MEMC.

The internal speakers may be muted by the control line SMUTE which is driven from the IOC output C5. On reset this signal will be taken high and the internal speakers will be muted.

The stereo output to the headphone socket is not muted by SMUTE and will always reflect the current output of the DAC channels.

The keyboard and mouse

The Keyboard and mouse connection to the ARM is via a keyboard controller and a serial link to the IOC. The ARM reads and writes to the KART registers in the IOC. The protocol is essentially half duplex, so in normal operation the keyboard controller will not send a second byte until it has received an ACK. The only exception to this is during the reset protocol used to synchronise the handshaking, where each side is expecting specific responses from the other, and will not respond further until it has those.

In addition to this simple handshaking system, the keyboard controller will not send mouse data unless specifically allowed to, as indicated by Ack Mouse, which allows the transmission of one set of

accumulated mouse coordinate changes, or the next move made by the mouse. While it is not allowed to send mouse changes the keyboard controller will buffer mouse changes.

A similar handshake exists on key changes,

transmitted as key up and key down, and enabled by Ack Scan. At the end of a keyboard packet (two bytes) the operating system will perform an Ack Scan as there is no protocol for re-enabling later. Mouse data may be requested later by means of Request Mouse Position (ROMP).

Key codes

The keyboard controller identifies each key by its row and column address in the keyboard matrix. Row and column codes are appended to the key up or down prefix to form the complete key code.

For example, Q key down — the complete row code is

11000010 (C2 hex) and the column code is 11000111 (C7 hex).

Note: Eight keys have N key roll over. The operating system is responsible for implementing two-key rollover, therefore the keyboard controller transmits all key changes (when enabled). The keyboard controller does not operate any auto-repeat; only one down code is sent, at the start of the key down period.

Data protocol

Data transmissions from the keyboard are either one or two bytes in length. Each byte sent by the keyboard controller is individually acknowledged. The keyboard controller will not transmit a byte until the previous byte has been acknowledged, unless it is the HRST code indicating that a power on or user reset occurred or that a protocol error occurred; see below.

Reset protocol

The keyboard controller restarts when it receives a HardReSeT (HRST) code from the ARM. To initiate a restart the keyboard controller sends a HRST code to the ARM, which will then send back HRST to command a restart.

The keyboard controller sends HRST to the ARM if :

- A power-on reset occurs
- A user reset occurs
- A protocol error is detected.

After sending HRST, the keyboard controller waits for a HRST code. Any non HRST code received causes the keyboard controller to resend HRST.

The pseudo program below illustrates the reset sequence or protocol:

```
START reset
ON error Send HRST code to ARM then wait for code from ARM.
IF code - HRST THEN restart ELSE error
ON restart clear mouse position counters
            set mouse mode to data only in response to an RMPS request.
            stop key matrix scanning and set key flags to up
            send HRST code to ARM
Wait for next code
IF code - RAK1 THEN send RAK1 to ARM
                                           ELSE error
Wait for next code
IF code - RAK2 THEN send RAK2 to ARM
                                           ELSE error
Wait for next code
IF code
          SMAK THEN mouse mode to send if not zero and enable key scan
ELSE IF code - SACK THEN enable key scanning
ELSE IF code - MACK THEN set mouse mode to send when not zero
ELSE IF code NACK THEN do nothing
                                           ELSE error
END reset
Reset sequencing
Direction Code
                         Expected
                                            Action on Action on Action if
                                                                          -d
```

терту	(Sender)	(Sender)	(Receiver)
ARM -> kb Hard reset Hard res	et Resend	Resend	Hard reset
Kb -> ARM Hard reset Reset Acl	k 1 Resend	Nothing	Hard reset

Kb -> ARM Reset Ack 1 Reset Ack 2 Nothing

Reset Ack 1 Reset Ack 1 Hard reset Hard reset Hard reset

Reset Ack 2 Reset Ack 2 Hard reset Hard reset Hard reset

Nothing

Hard reset

ARM -> Kb

ARM -> Kb

Note, the on/off state of the LEDs does not change across a reset event, hence the LED state is not defined at power on. The ARM is always responsible for selecting the LED status. After the reset

sequence, key scanning will only be enabled if a scan enable acknowledged (SACK or SMAK) was received from the ARM.

Data transmission

When enabled for scanning, the keyboard controller informs the ARM of any new key down or new key up by sending a two byte code incorporating the key row and column addresses. The first byte gives the row and is acknowledged by a byte acknowledge (BACK) code from the ARM. If BACK was not the acknowledge code then the error process (ON error) is entered. If the BACK code was received the keyboard controller sends the column information and waits for an acknowledge. If either a NACK, SACK, MACK or SMAK acknowledge code is received, the keyboard controller continues by processing the ACK type and selecting the mouse and scan modes implied. If the character received as the second byte acknowledge was not one of NACK/MACK/SACK/SMAK then the error process is entered.

Mouse data

Mouse data is sent by the keyboard controller if requested by a ROMP request from the ARM or if a SMAK or MACK have enabled transmission of nonzero values. Two bytes are used for mouse position data. Byte one encodes the accumulated movement along the X axis while byte two gives Y axis movement.

Code values

Both X and Y counts must be transferred to temporary registers when data transmission is triggered, so that accumulation of further mouse movement can occur. The X and Y counters are cleared upon each transfer to the transmit holding registers. Therefore, the count values are relative to the last values sent. The ARM acknowledges the first byte (Xcount) with a BACK code and the second byte (Ycount) with any of NACK/MACK/SACK/SMAK. A protocol failure causes the keyboard controller to enter the error process (ON error).

When transmission of non-zero mouse data is enabled, the keyboard controller gives key data transmission priority over mouse data except when the mouse counter over/underflows.

Acknowledge codes

There are seven acknowledge codes which may be sent by the ARM. RAK1 and RAK2 are used during the reset sequence. BACK is the acknowledge to the first byte of a two byte keyboard data set. The four remaining types, NACK/MACK/SACK and SMAK, acknowledge the final byte of a data set. NACK disables key scanning and therefore key up/down data transmission as well as setting the mouse mode to send data only on ROMP request. SACK enables key scanning and key data transmission but disables unsolicited mouse data. MACK disables key scanning and keydata transmission and enables the transmission of mouse count values it either X or Y counts are non-zero. SMAK enables key scanning and both key and mouse data transmission. It combines

Mnemonic	msb	lsb	Comments
HRST	1111	1111	One byte command, keyboard reset
RAK1	1111	1110	One byte response in reset protocol
RAK2	1111	1101	One byte response in reset protocol
RQPD	0100	xxxx	One byte from ARM, encodes four bits of data
PDAT	1110	xxxx	One byte from keyboard, echoes four data bits of RQPD
RQID	0010	0000	One byte ARM request for keyboard ID
KBID	10xx	xxxx	One byte from keyboard encoding keyboard ID
KDDA	1100	xxxx	New key down data. Encoded Row (1st byte) and column (2nd byte)
			numbers
KUDA	1101	XXXX	Encoded Row (1st byte) and column (2nd byte) numbers for a new key up
RQMP	0010	0010	One byte ARM request for mouse data
MDAT	Oxxx	XXXX	Encoded mouse count, X (byte1) then Y (byte2). Only from ARM to
			keyboard
BACK	0011	1111	Ack for first keyboard data byte pair
NACK	0011	0000	Last data byte ack, selects scan/mouse mode
SACK	0011	0001	Last data byte ack
MACK	0011	0010	Last data byte ack
SMAK	0011	0011	Last data byte ack
LEDS	0000	Oxxx	Bit flag to turn LED(s) on/off
PRST	0010	0001	From ARM, one byte command, does nothing

x is a data bit in the Code; e.g. xxxx is a four bit data field

the enable function of SACK and MACK.

While key scanning is suspended (after NACK or MACK) any *new* key depression is ignored and will not result in a key down transmission unless the key remains down after scanning resumes following a SACK or SMAK. Similarly a key release is ignored while scanning is off.

Commands may be received at any time. Therefore, commands can be interleaved with acknowledge replies from the ARM. For example, keyboard sends KDDA (1st byte), keyboard receives command, keyboard receives BACK, keyboard sends KDDA (2nd byte), keyboard receives command, keyboard receives SMACK. If the HRST command is received, the keyboard immediately enters the restart sequence, (ON restart). The LEDS and PRST commands may be acted on immediately. Commands which require a response are held pending until the current data protocol is complete. Repeated commands only require a single response from the keyboard.

ARM commands

Mnemonic	Function
HRST	Reset keyboard
LEDS	Turns key cap LEDs on/off. A three bit field indicates which state the LEDs should be in. Logic 1 is ON, logic 0 (zero) OFF. DO controls CAPS LOCK D1 controls NUM LOCK D2 controls SCROLL LOCK
RQM	Request mouse position (X,Y counts)
RQID	Request keyboard identification code. The computer is manufactured with a 6 bit code to identify the keyboard type to the ARM. Upon receipt of ROID the keyboard controller transmits KBID to the ARM
PRST	Reserved for future use, the keyboard controller ignores this command
RQPD	For future use. The keyboard controller will encode the four data bits into the PDAT code data field and then send PDAT to the ARM.

Mouse interface

The mouse interface has three switch sense inputs and two quadrature encoded movement signals for each of the X axis and Y axis directions. Mouse key operations are debounced and then reported to the ARM using the Acorn key up / key down protocol. The mouse keys are allocated unused row and column codes within the main key matrix.

Switch 1 (left)	Row code - 7	Column code -0
Switch 2 (middle	Row code - 7	Column code - 1
Switch 3 (right)	Row code - 7	Column code - 2

For example, switch 1 release would give 11010111 (D7 hex) as the complete row code, followed by 11010000 (DO hex) for the column code.

Note: Mouse keys are disabled by NACK and MACK acknowledge codes, and are only enabled by SACK and SMAK codes, ie they behave in the same way as the keyboard keys.

The mouse is powered from the computer 5 V supply and may consume up to 100 mA.

Movement signals

Each axis of movement is independently encoded in two quadrature signals. The two signals are labelled REFerence and DIRection (e.g. X REF and X DIR). The table below defines the absolute direction of movement. Circuitry in the keyboard decodes the quadrature signals and maintains a signed 7 bit count for each axis of mouse movement.

Ink	al	N	ext	
St	ate	St	ate	
REF	DIR	REF	DIR	
1	1	1	0	Increase count by one for each change of state.
1	0	0	0	
0	0	0	1	
0	1	1	1	
1 0 0 1	1 1 0 0	0 0 1 1	1 0 1	Decrease count by one for each change of state.

When count overflow or underflow occurs on either axis both X and Y axis counts lock and ignore further mouse movement until the current data has been sent to the ARM.

Overflow occurs when a counter holds its maximum positive count (0111111 binary). Underflow occurs when a counter holds its maximum negative count (1000000 binary).

Service Manual

Keyswitch mapping

Key	Кеу	Row	Col.	Notes
Size	Name	code	code	
	Fac			1
	ESC	0	0	1
			2	2
	F2		2	2
	го Е4		3	2
	F 4		5	2
1	F6	0	6	2
1	F7	0	7	2
1	F8	0	8	2
1	F9	0	9	2
1	F10	ō	Ă	2
1	F11	0	В	2
1	F12	0	c	2
1	Print	0	D	1,3
1	Scroll	о	E	1
1	Break	о	F	1
1	-	1	о	
1	1	1	1	
1	2	1	2	
1	3	1	3	
1	4	1	4	
1	5	1	5	
1	6	1	6	
1	7	1	7	
1	8	1	8	
1	9	1	9	
1	0	1	A	
1	†_	1	В	
1	=+	1	C	
1	£	1	р	
1	Backspo		E	1
1	Insert	1	F	1
1	Home	2	0	1,3
	Pgup	2	1	1
1	Numloc	κ2	2	1,4
1		2	3	1
1	×	2	4	1
1	#	2	5	1
	1	1	1	- 1

Key Size	Key Name	Row code	Col. code	Notes
1.5 1 1 1 1 1 1 1 1 1 1 1 1 1	Tab Q W E R T Y U I O P [{]} \ Delete Copy Pgdwn 7 8 9 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6789ABCDEF0123456789A	1 1 1 1
1.75 1 1 1 1 1 1 1 1 1 1 1 2.25 1 1 1 1 1 1 1 1 1 1 1 1 1	Ctrl A S D F G H J K L ;; * return 4 5 6 +	3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	B C D F 0 1 2 3 4 5 6 7 8 9 A B	1,3
Row and column codes are in Hexadecimal. Notes: 1 Key colour - dark grey 2 Key colour - red 3 Key position with N key roll over. 4 Green light emitting diode under key cap.				

ŀ

Key Size	Key Name	Row code	Col. code	Notes
2.25	shift	4	С	1,3
1	Z	4	Е	,
1	Х	4	F	
1	С	5	0	
1	V	5	1	
1	В	5	2	
1	N	5	3	
1	М	5	4	
1	,<	5	5	
1	.>	5	6	
1	/?	5	7	
2.75	shift	5	8	1,3
1	crsrUp	5	9	1
1	1	5	А	
1	2	5	В	
1	3	5	С	
1.5	Caps	5	D	1,4
1.5	Alt	5	Е	1,3
7.0	Space	5	F	
1.5	Alt	6	0	1,3
1.5	Ctrl	6	1	1,3
1	crsrLt	6	2	1
1	crsrDn	6	3	1
1	crsrRt	6	4	1
2.0	0	6	5	
1		6	6	
2.0	Enter	6	7	1
Row and co	lumn codes a	L are in Hexadecin	nal.	
Notes: 1 Key colour - dark grey 2 Key colour - red				

Key position with N key roll over.
 Green light emitting diode under key cap.

Floppy disc drive

The floppy disc drive used on the A3000 computer is a one-inch high drive, taking 3.5 inch floppy discs.

Performance

Capacity	1 MB (unformatted)
Track to track step rate	3ms
Seek settle time	15ms
Write to read timing	1200µs
Power-on to drive ready	1000ms
Power supply	+5Vdc (+1- 5%)
Noise bandwidth	0 - 30 MHz
Maximum power	2 Watts (continuous)

Power connector

The power connector is a 4-pin, 25mm pitch type. The LED is ON when Drive Select and In Use are low or when Drive Select is low.

Pin	Signal
1	+5V
2	Ground
3	Ground
4	No connection

Interface connector

The interface connector is a 34-way 2 row, 0.1 inch pitch type, with pinouts as shown below:

P	Pin	Signal	Dir
Retn	Signal		(pcb)
1 3 5* 7* 9* 11* 13 15 17 19 21 23 25 27 29 21	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 22	Disc change In use Drive select 3 Index Drive select 0 Drive select 1 Drive select 2 Motor ON Direction Step/Dsc chg rst Write data Write gate Track 0 Write protect Read data	
33	34	Ready	I

*Optionally 5V

Power supply

Performance characteristics

Performance	Min	Nom	Max	Units
Input voltage (47-53 Hz) Input voltage (57-63 Hz) Output voltage V01 Output current 101 Output ripple and noise VO1	198 99 4.9 0.5	220/ 240 115 5 -	264 130 5.1 4.4	Vac Vac Vdc Amps dc 50mV pk-pk
Overshoot VO1 Over voltage plot VO1 (thrshld) Surge output current 101 Surge output current duration Efficiency Total output power	5.8 - - 65 -	- - -	7.0 5.8 1.0 - 22	BW 0-50MHz 0.1Vdc Vdc Amps dc Sec %@max Id Watts cont 29 Watts srge

Input voltage is selected by means of a link wire connected either to the pin marked '240' on the left-hand side of the power supply (when facing the front of the computer), or to the pin marked '120' in the top centre of the PSU. If the input voltage is changed, it is strongly recommended that a label, indicating the new voltage to which the computer has been set, is fixed to the outside of the case. A mains plug appropriate to the new supply should also be fitted, to prevent the computer from being powered up at the wrong voltage.

DANGER

DANGEROUS VOLTAGES ARE EXPOSED INSIDE THE CASE OF THE COMPUTER WHEN THE COVER IS REMOVED. THE COMPUTER SHOULD BE DISCONNECTED FROM THE MAINS SUPPLY BEFORE THE COVER IS REMOVED.

Floppy disc power connector

Pin	Signal	
1	+5 V	
2	0V	
3	N.C.	
4	N.C.	

Service Manual

Links

Link	Fitted	Effect	Default
LK22	Yes		None
		Connection point for left channel audio speaker. P1 0V, P2 signal.	
LK23	Yes	Connection point for right channel audio speaker. P1 0V, P2 signal.	None
LK5	No	Connection point for an external battery. (Only used if supply of on board NiCad becomes a problem.)	None
LK20	Yes	Used in conjunction with LK19 to select size of ROM devices	Shunt 2-3
LK19	Yes	Used in conjunction with LK20 to select size of ROM devices. ROM LK19 LK20 512K 2-3 2-3 1M 2-3 2-3 2M 1-2 2-3 4M 1-2 1-2	Shunt 2-3 ie 1M
LK25	Yes	Used to configure P5 of SK14 (RGB Video Socket) to be either 'VSync' or 'Mode'.	Shunt NF ie 'Mode'
		Fit shunt for 'VSync' NF shunt for 'Mode' (Mode is required by some SCART TVs.)	
LK24	Yes	Used to configure P4 of SK14 (RGB Video Socket) to be either 'HSync' or 'CSync'.	Shunt 2-3 ie 'CSync'
		Shunt , 1-2 for 'HSync' Shunt , 2-3 for 'CSync'	
LK27	Yes	Used to invert 'VSync'. Shunt fitted , VSync*	ie 'VSync'
LK26	Yes	Used to invert 'HSync'.	Shunt NF ie 'HSync'
		Shunt fitted , HSync* Shunt NF, HSync	
LK7	No	Test point for Non Volatile Memory clock frequency. P1 OV	None
LK30	Not	P2 32.768KHz Used in conjunction with LK29 and LK28 (&. 31 on Iss1) to provide the necessary signals for a Genlock interface circuit.	Nero
		P1 VS* P2 HS*	None
LK28	Not	P1 Ckvidc P2 Clksys*	Trk 1-2 (Shunt on Iss1)
LK29	Not	P1 0V P2 Sink	Trk 1-2 (Shunt on lss 1)
LK31	Not	P1 'Sup' P2 0V	None
LK6	No	Test point for Non Volatile Memory battery voltage. P1 0V P2 1.2V +/- 0.2V	None

Link	Fitted	Effect	Default
LK8 LK9 LK10 LK11 LK12 LK13	No No No No No	Used to set nationality id of the keyboard.	LK12 Trk ie UK
LK1 LK2 LK3	No No No	Used to optionally link 0V to the RFI Shield (Earth). Connection point for a design backup, self contained keyboard.	NF NF NF
LK4	No	P1 Krst Keyboard reset P2 NC P3 0V P4 5V P5 Krx' From keyboard PS Ku' To keyboard	NF
		Connection point for design backup, mouse to keyboard link. P1 Xr X ref P5 Sw(1) Switch 1 P2 Xd X dir P6 Sw(2) Switch 2 P3 Yr Yref P7 Sw(3) Switch 3 P4 Yd Ydir P8 QV	
LK17	Not	Used in conjunction with LK18 . to select ROM device type.	Trk 1-2 (Shunt on Iss1)
LK18	Not	Used in conjunction with LK17 to select ROM device type. ROM LK17 LK18 512K EPROM 1-2 1-2 Non JEDEC 1 M ROM 1-2 1-2 Non JEDEC 1/214M ROM/ EPROM 1 1 1	Trk 1-2 ie Non JEDEC (Shunt on Iss1)
LK16	No	2 — 2 Used to select the design backup keyboard. See LK3. 1-2 Selects backup keyboard	Trk 2-3 ie Main K/B
LK21	No	 2-3 Selects main keyboard Selects the +5V power feed to the floppy disc drive to be via the data cable or by separate feed with PLS. 1-2 +5V via data cable 	Trk 2-3 ie not via data cable
LK14 LK15	No No	2-3 +5V via separate cable Used in conjunction with LK15 to select the keyboard uC device type. Device Type LK14 LK15 8051 (NMOS) 1-2 1-2	Trk 1-2 Trk 1-2 ie NMOS
LK32	No	80051 (CMOS)O/C 2-3Provides access to RGB inter- face signals (Issue 1 only):1 - Red2 - Green3 - Blue6 - 0V	NF
Notes	*	NF - Not Fitted P1 - Pin 1 0/C - Open Circuit Trk - Tracked * Active Iow t Fitted on Issue 1 PCB	

Service Manual

Plugs

Sockets

PL5 No Floppy Disc Power Connector power to the disc drive is to t via the data cable, then PL5 and the PSU free disc power be connected to this plug wit P1 NC P2 OV	r. If the be supplied must be fitted socket must h LK21.		
P1 NC P2 OV			
P3 OV P4 +5V			
PL6 No Floppy Disc Drive Data Conr way Box Header containing a required by the internal flopp	ector. 34 all the signals y disc drive.		
This interface is identical to t Archimedes, except that the of some of the signals has be as only one drive is supporte	hat of the drive strength een reduced d. The pin due to the		
incorrect orientation of the Au layout.	chimedes		
Default powering is via a sep connector from the PSU (ie data cable).	arate power not up the		
Pin Signal F 2 Dcirq* 2 4 In use* 2 6 Sel(3)* 2 8 Index' 2 10 Sel(0)* 2 12 Sel(1)* 3 14 Sel(2)* 3 16 W or m' 3 18 Dirin*	Pin Signal 0 Step* 2Writedata* 4 Writegate* 6 Track00* 8 Writeprot* 0 Readdata* 2 Side1* 4 Ready'		
1,3,13,15,17,19,21,23,25,27 (5,7,9,11 OV via LK21)	1,3,13,15,17,19,21,23,25,27,29,31,33 all OV (5,7,9,11 OV via LK21)		
PL1 Yes Faston tab for connection of power supply.	Faston tab for connection of Earth from the power supply.		
PL3 Yes Faston tab for connection of power supply.	OV from the		
PL4 Yes Faston tab for connection of power supply.	Faston tab for connection of +5V from the power supply.		
PL2 Yes Serial Port (IBM PC-AT Pino 9 Way D-type plug.	ut)		
Although the plug is fitted, th electronics are an upgrade c IC 7 LT1133 IC 1 65C51	e interface onsisting of:		
Pin Signal P I Dcd 6 2 Rxd 7 3 Txd 8 4 Dtr 9 5 OV 5	in Signal Dsr Rts Cts Ri		

No.	Fitted	Function/Specification	
SK1	Yes	Mouse Port. 9-way MiniDin socket providing interface to a standard Acom (Archimedes style) mouse.	
		987 6543 21	
		PinSignal1XrX direction reference2Sw(1)Switch 13Sw(2)Switch 240 VV5XdX direction6+5V+5V7YrY direction reference8Sw(3)Switch 39YdY direction	
SK4	Yes	Econet Upgrade Module Socket. 17-way header used in conjunction with SK5 to provide the electrical connection point for the internal Econet upgrade module. This module is identical to that used in the BBC Master series and Archimedes computers.	
SK16	Yes	Ram Upgrade Connector. A 60-way SIL pin row, providing all the necessary signals for the Acorn 1MByte Ram upgrade card.	
SK3 SK11 SK8 SK9	Yes Yes Not Not	Internal Expansion. These connectors jointly form the internal expansion facility and are in the form of two17-way headers for SK3 & 11 and two 5-way headers for SK8 & 9.	
		SK3 & SK11 form an 8-bit 'simple' podule bus SK3, 11, 8 & 9 form an 8-bit MEMC podule bus.	
		A full specification of this expansion interface is provided in the chapter headed 'A3000 Expansion'.	
SK6 SK7	Yes Yes	Keyboard Interface. Two 20-way 'flexible PCB' connectors providing an interface to the keyboard.	
Notes: t Fitted t	o Issue 1	PCBs	

Socket diagrams are viewed from outside the computer

Sockets (contd)

No.	Fitted	Function/Specification		
SK14	Yes	RGB Video Socket. 9 way D type socket providing an interface to analogue RGB monitors and Scart TVs. Links 24, 25, 26 & 27 can be used to alter the polarity and type of synchronisation signals present to suit a variety of monitors.		
		RGB Video levels , 0.7V Pk-Pk into 75 Ohm Sync Voltage levels , >= 2.0V (TTL)		
		$5 \ 4 \ 3 \ 2 \ 1$ $0 \ 0 \ 0 \ 0 \ 0$ $9 \ 8 \ 7 \ 6$		
		Pin Signal (IBM PC PGA pinning) 1 Red 2 Green 3 Blue 4 H/Csync 5 Vsync/Mode 6,7,8,9 0V		
SK13	Yes	Monochrome Video Output. Phono socket providing a monochrome composite video signal of 1V Pk–Pk (0.7V video, 0.3V Sync) into a 75 Ohm load. Negative sync, positive video.		
SK12	Yes	Stereo Headphone Output. 3 way 3.5mm stereo jack socket providing output to personal stereo type 32 Ohm stereo headphones.		
		Output voltage = 1V Pk–Pk into 32 Ohm load.		
SK15	Yes	External Podule Expansion. 64 Way DIN41612 socket providing an interface connection to a single, host powered, external Podule. This Podule may be a "MemC" or "Simple" type but not a Co-processor. For a full spec of this interface see the chapter headed "A3000 expansion"		
SK10	Yes	Parallel Printer Port. 25 way D-type socket providing a parallel printer interface.		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		Pin Signal Pin Signal Pin Signal 1 Stb* 8 Pd(6) 15 nc 2 Pd(0) 9 Pd(7) 16 nc 3 Pd(1) 10 Ack* 17/25 0V 4 Pd(2) 11 Bay 5 Pd(3) 12 nc 6 Pd(4) 13 nc 7 Pd(5) 14 nc		

No.	Fitted	Function/Specification
SK2	Yes	Econet Socket. 5 way Din socket for connection to Econet local area network. Note, this interface is an upgrade.
		$3 \bigcirc 0 \bigcirc 1$ $5 \bigcirc 0 4$ 2
		Pin Signal 1 Data 2 OV 3 Clock* 4 Data* 5 Clock
SK5	Yes	Econet Upgrade Module Socket. 5 way header used in conjunction with SK4 to provide electrical connections for the Econet upgrade module. This module is identical to that used on BBC Master series and Archimedes computers.

Changes between Issue A and Issue 1 PCBs

This manual covers A3000s produced with both Issue A and Issue 1 PCBs, and drawings for both versions are included. This section summarises the changes made during the production of Issue A boards, and the design changes made for Issue 1.

Modifications to Issue A PCBs

Component value changes

The chart below summarises the component value changes made during the production of Issue A PCBs, showing the first serial number changed.

(Unless otherwise stated, resistors are 5% SMD.)

Comp.	Issue A	Changed to Serial no.		
R67	68R	22R	1000051	
R68	68R	22R	1000051	
R69	68R	22R	1000051	
R70	68R	22R	1000051	
R71	68R	22R	1000051	
R81	33K	3K3	1000013	
R82	150K 1%	22K 1%	1000013	
R85	33K	3K3	1000013	
R86	150K 1%	22K 1%	1000013	
R88	33K	3K3	1000013	
R89	33K	3K3	1000013	
R91	150K 1%	22K 1%	1000013	
R92	33K	3К3	1000013	
R93	150K 1%	22K 1%	1000013	
R95	150K 1%	22K 1%	1000013	
R97	150K 1%	22K 1%	1000013	
R98	150K 1%	22K 1%	1000013	
R99	150K 1%	22K 1%	1000013	
R101	33K	3K3	1000013	
R105	470R	680R	1000051	
R129	33R	22R	1000051	
R130	33R	22R	1000051	
R131	33R	22R	1000051	
R132	33R	22R	1000051	
R133	33R	22R	1000051	
R137	100K	10K	1000051	
R502	6K8	4K7	1000013	
R530	22K	1K	1004150	
C75	100p CPLT	2n2 CPLT 10%	1000013	
C77	2n7 CPLT	22n MPSTR 10%	1000013	
C80	22n MPSTR	100n MPSTR 10%	1000013	
C81	330p	2n2 CPLT	1000013	
C82	330p	2n2 CPLT	1000013	
C86	330p	2n2 CPLT	1000013	
C88	22n MPSTR	100n MPSTR 10%	1000013	
C90	100p CPLT	2n2 CPLT 10%	1000013	
C91	330p	2n2 CPLT	1000013	
C92	2n7 CPLT	22n MPSTR 10%	1000013	

The following additional modifications were made during the production of Issue A PCBs:

Serial interface

10K resistor (5%, conventional type) was added as a ' pullup' to the rear of the PCB, connected between the signal Rii* (IC7 pin 18) and +5V (from serial number 1000001).

Video genlocking

The tracks on the underside of the PCB, between the pins of both LK28 and LK29, were cut. 2-pin wafers were fitted to LK28, 29 & 30, and shunts to LK28 and 29 (but not LK30) (from 1000251).

I²C-bus access

Two 5-way headers (0800,486) were fitted to SK8 and SK9 (from 1000251).

JEDEC & non-JEDEC EPROMs

To permit the use of JEDEC and non-JEDEC EPROMs, tracks on the PCB, between the pins of both LK17 and LK18, were cut. 2-pin wafers were fitted to LK17 & 18, and shunts fitted to LK17 and 18 (from 1000251).

Fixing of 64W connector

Two rivets (Avdel 11070312) were added to the mounting holes of the 64-way expansion connector.

Design changes made between Issue A and Issue 1 PCBs

Serial interface

The 'strapped on' resistor (see above) was replaced by a permanent resistor (10K SMD 5%) — R144.

Signal conditioning

R141, R142 and R143 have been added (22R SMD 5%) to REF8M, RA9 and IORQ. R134 has been moved to accomodate these.

A capacitor C116 (2n7) has been added between SW3 and OV.

Video genlocking

LK28 & 29 tracks have been deleted (see above). LK 28, 29 & 30 moved.

LK31 has been added. This allows access to the VIDC supremacy bit (pin 28) and GND.

JEDEC & non-JEDEC EPROMs

The tracks between the pins of LK17 & 18 have been deleted (see above).

RGB & SYNC

A 6-way connector (LK32, not fitted) has been added to RGB & SYNC for internal access.

Production changes

The components R550, C55, C78, C500, C501 and C504 have been moved to facilitate production.

R145 (4K7 SMD 5%) has been added between 1C2 pin 31 and +5V to accomodate ATE.

Test points have been added to the following lines:

ARM20-MEMC3 MEMC38 MEMC39 MEMC40 MEMC41 MEMC42 (R129-R132 have been moved to accomodate these test points.)

A3000 expansion

Internal expansion

DANGER

DANGEROUS VOLTAGES ARE EXPOSED INSIDE THE CASE OF THE COMPUTER WHEN THE COVER IS REMOVED. THE COMPUTER SHOULD BE DISCONNECTED FROM THE MAINS SUPPLY BEFORE THE COVER IS REMOVED.

The following internal upgrades are currently available for the A3000 computer:

- User port / MIDI internal expansion card
- 1 Mb Ram upgrade
- · Serial port
- · Econet module

Internal upgrades must be fitted by an Acorn Dealer or Approved Service Centre.

Interface

The electrical signals available on the internal expansion are a subset of those described in 'A Series podules', available from Acorn Customer **Service as an** Application Note, or on the SID system (Doc Ref 0310101).

The connection is via two 17-way 0.1 inch pitch connectors and two 5-way 0.1 inch connectors (the latter fitted as standard to Issue 1 PCBs and later). Expansion cards should use 0.025 in square pin headers.

Expansion bus connectors

Pin no	SK3	SK11	SK8	SK9
1	+5V	0V	C[0]	0v
2	PWE*	+5v	C[1]	REF8M
3	PS1*	PRE*	BI	PFIQ*
4	CLK2	PR/nW	IORQ*	Ms[1]*
5	LA[2]	LA[4]	IOGT	+5V
6	LA[3]	LA[5]		
7	BD[0]	LA[6]		
8	BD[1]	LA[7]		
9	BD[2]	0V		
10	BD[3]	LA[8]		
11	BD[4]	LA[9]		
12	BD[5]	LA[10]		
13	BD[6)	LA[11]		
14	BD[7]	LA[12]		
15	RST*	LA[13]		
16	0V	PIRQ*		
17	+5V	0V		

Note: Pin 1 is at the righthand end when viewed from the front of the computer.

The interface is configured as 'Podule 1, Module 1'.

It is recommended that the load on each signal does no exceed 3HCT gates or that stated in 'A Series podules'. Any upgrade must be able to drive at least 7 HCT and 3 TTL loads on the data bus.

Power supply

The maximum power available from the +5V rail is 600 mA. The maximum dissipation inside the case is 0.5W (100mA).

Mechanical

The rear panel required is shown in the drawing at the back of this manual. The size of the User Port/MIDI expansion card PCB and position of the connectors are also shown in the drawing at the back of the manual.

User port/MIDI expansion card (UPM)

Introduction

The A3000 User Port / MIDI expansion card fits inside the computer, and provides:

• An 8-bit User Port, largely compatible with the User Port interface on the BBC Model B and Master 128 microcomputers (and with the User Port on the Archimedes I/O expansion card).

MIDI (Musical Instrument Digital Interface), with IN, OUT and THRU connections, compatible with the International MIDI Association specification.

Main components

- · 65C22 VIA for the User Port
- 2691 UART for the MIDI
- · 27128 EPROM containing firmware and ID byte.

Service Manual

UPM block diagram

Comparison with Archimedes expansion cards

ARCHIMEDES I/O EXPANSION CARD

- The VIA is at the same address and clocked at the same speed. Port A PA<0..2.> is used to page ROM. These are the same as the UPM when set for 2764/27128.
- The User port is the same (Port B). The VIA interrupts go through a link, which is not normally fitted.
- The MIDI section is not the same.
- The ADC and 1 MHz bus are not fitted to the UPM.

MIDI EXPANSION CARD

- The UART is the same (Signetics 2691), but is at a different address (see below).
- The ROM page latch is not the same.

	LA13	LAI2	offset address
MiDi Podule	1	0	82000
UPM upgrade	1	1	83000

Addresses of main system components

Address	Component		
&0000-1FFC	ROM/EPROM 271 28 as standard (16k x 8 bit). Larger EPROMS can be fitted if the links marked X are cut between pins		
	1 & 2, and relinked 2 to 3.		
	Eprom size LK 1 LK 2 LK3 LK4 2764 27128 27256 X 27512 X X 1M bit (JEDEC) X X 2m bit X X X 4 LK 1 LK 2 LK3 LK4 27512 X X X X		
	4m bit X X X X		
	Contains the iD byte 63 (dec). The start-up information must be at the top of the ROM.		
&2000-2FFC	VIA 65C22 - 2Mhz part.		
	Port A PA<70> used to page the ROM.		
	CAs Not Used.		
	Port B PB<70>, CB1 and CB2 for the		
	User Port.		
	Use 2Mhz synchronous cycle to access the VIA.		
	The interrupt output connects directly to		
	PIRQ*.		
	No User Port interrupt handler provided.		
&3000-3FFC	UART 2691 - For the MiDi interface.		

Fitting an Internal expansion card

This procedure covers the fitting of an internal expansion card, such as the User Port / MIDI expansion card. This work should only be carried by Acorn Dealers or Approved Service Centres:

- 1 Follow the procedure for removing the cover of the computer given in the next chapter.
- 2 Unscrew the two machine screws holding the rear blanking plate in place, and remove the plate:

3 Plug the expansion card into the connectors on the PCB, and press firmly home:

4 Replace the two screws holding the expansion card backplate, and secure firmly.

- 5 Replace the cover of the computer.
- 6 Run the dealer test software to test the correct function of the computer and the upgrade, and of any other upgrades fitted.

Keep the rear panel blanking plate with the computer, in case the expansion card is removed later.

1Mb RAM upgrade

The A3000 computer RAM can be upgraded from 1Mb to 2 Mb by the addition of a 1Mb RAM module which plugs into the main PCB.

Fitting a RAM upgrade

- 1 Follow the procedures detailed in the next chapter for the removal of the computer cover and the keyboard.
- 2 To fit earlier RAM upgrades with securing lugs, remove two PCB retaining screws and plug the upgrade module, in a vertical position, into the board. Later upgrades, with no fitting lugs, simply push into the connectors on the PCB:

- 3 Replace the screws securing the PCB and the upgrade module.
- 4 Replace the keyboard and the cover of the computer.
- 5 Run the dealer test software to test the correct function of the computer and the upgrade, and of any other upgrades fitted.

Serial port upgrade

Introduction

The A3000 computer is fitted with a 9-way D-type serial connector on the back panel, but this is not functional until a serial port upgrade kit has been fitted by an Acorn Dealer or Approved Service Centre. Only Acorn Serial Port Upgrade kits should be used.

The A3000 serial port upgrade consists of a serial processor chip and a line driver chip, which fit into existing sockets on the PCB.

Connector pinouts

Fitting the Acorn A3000 serial port upgrade

WARNING: It is a recommended requirement that anti-static precautions should be utilised at all levels of servicing, ie antistatic matting and wriststraps.

- 1 Follow the procedures in the next chapter for the removal of the cover and the keyboard.
- 2 Remove the Econet module and the User Port / MIDI expansion card, if fitted.
- 3 Insert the 28-pin IC 65C51 into socket IC1, and the 24pin IC LT1133 into socket IC7. The notched ends of the ICs should face towards the left hand side of the PCB (viewed from the front of the computer) :

- 4 Fit the serial number label to the PCB near the upgrade ICs.
- 5 Refit any modules and expansion cards removed in step 2 above, and replace the cover of the computer.
- 6 Remove the label 'Serial not fitted' from the rear panel.
- 7 Run the dealer test software to test the correct function of the computer and the serial port, and of any other upgrades disturbed during this installation.

Fitting an Econet module

- 1 Follow the procedure in the next chapter for removing the cover of the computer.
- 2 Plug the module onto the PCB connectors:

- 3 Replace the cover of the computer.
- 4 Run the dealer test software to test the correct function of the computer and the Econet module, and of any other upgrades fitted. Refer to the appropriate Econet file server Manager's Guide for instructions on setting the station id.

External expansion

Interface

introduction

The A3000 computer supports an external expansion card (podule) interface, although with some minor differences from other ARM based systems:

- Single +5Volt power supply rail, rated at a maximum of 1 Amp (no +12 or –5 Volt rails provided)
- No support for Co-Processor type cards
- The external expansion card is in software slot 0
- The podule must be capable of driving 3 TTL and 7HCT loads on the data bus.

Refer to the application note 'A series podules' (referenced at the start of this chapter) for a full podule interface specification.

Physical dimensions

As the podule is external to the computer enclosure there is no real limit on the size of the unit. Care should be taken not to block off any of the other expansion ports on the rear of the computer.

Fitting an expansion card

WARNING

Power down the computer before fitting or removing an external expansion card.

It is anticipated that expansion cards will be fitted into a suitable external expansion card unit. Slots are provided underneath the case of the computer, into which a tongue in the case of the expansion card unit can locate. Tapped holes are provided in the backplate of the computer to enable the expansion unit to be secured to the computer with two M6 screws.

Connector

The podule interface is provided via a 64-way DIN A+C 41612 socket fitted at the rear of the computer:

The connections to the interface are shown overleaf.

Service Manual

External expansion connections

Pin	ROW A	ROW C	Row C description
	a) (a) (
1		0V	Ground
2		reserved	Ground
3	LA[14]	00	Ground
4		UV	Ground
5	LA[12]	reserved	
6	LA[11]	MS[0] [*]	MEMC Podule select
1	LA[10]	reserved	
8	LA[9]	reserved	
9	LA[8]	reserved	
10	LA[7]	reserved	
11	LA[6]	reserved	
12	LA[5]	FIST*	Reset (see note below)
13	LA[4]	PR/W*	Read/not write
14	LA[3]	PWE*	Write strobe
15	LA[2]	PRE*	Read strobe
16	BD[15]	PIRQ*	Normal interrupt
17	BD[14]	PFIQ*	Fast interrupt
18	BD[13]	S[6]*	
19	BD[12]	C[1]	12C serial bus clock
20	BD[11]	C[0]	I2C serial bus data
21	BD[10]	S[7]*	External Podule select
22	BD[9]	PS[0]	Simple Podule select
23	BD[8]	IOGT*	MEMC Podule handshake
24	BD[7]	IORO	MEMC Podule request
25	BD[6]	BL*	VO data latch control
26	BD[5]	0V	Supply
27	BD[4]	CLK2	2MHz Synchronous clock
28	BD[3]	CLK8	8MHz Synchronous clock
29	BD[2]	REF8M	8MHz Reference clock
30	BD[1]	+5V	Supply
31	BD[0]	reserved	
32	+5V	reserved	

Note: The RST* signal is the system reset signal, driven by IOC on power-up or by the keyboard reset switch. It is an open-collector signal, and expansion cards may drive it also if this is desirable. The pulse width should be at least 50ms.

Service Manual

A3000

Disassembly and reassembly

DANGER

DANGEROUS VOLTAGES ARE EXPOSED INSIDE THE CASE OF THE COMPUTER WHEN THE COVER IS REMOVED. THE COMPUTER SHOULD BE DISCONNECTED FROM THE MAINS SUPPLY BEFORE THE COVER IS REMOVED.

Removing the cover

To remove the cover from the computer, follow this procedure:

- 1 Disconnect all peripherals and unplug the computer from the mains supply.
- 2 Unplug the mouse connector from the underside of the computer.
- 3 Remove the centre fixing screw on the underside of the case:

4 Remove the two screws from the clips at the rear of the computer:

- 5 Unhook the two clips and slightly lift up the back of the cover, pivoting on the front.
- 6 Locate the three rectangular holes on the front underside of the case. Insert a screwdriver into the rear edge of each of these holes in turn. Push and twist until the catch comes free of the lower case.
- 7 Repeat this procedure for the other two holes until the cover lifts clear.

Fitting is the reverse of the above procedure, ignoring step six.

Removing the keyboard

WARNING

The keyboard connector can be damaged by incorrect handling. Hold it by the white plastic strengthening strip only. Do not touch the track faces or apply pressure to the cable itself.

- 1 Follow the procedure for removing the cover.
- 2 Unplug the keyboard connector, and lift the keyboard out from the lower case.

Fitting is the reverse of the above procedure.

Removing the floppy disc drive

- 1 Follow the procedure for removing the cover.
- 2 Disconnect the power supply cable from the drive, and the ribbon cable from the PCB.
- 3 Remove the keyboard (see above).
- 4 Turn the lower case upside down and support the drive on a foam pad.
- 5 Remove the four recessed drive fixing screws:

6 Tturn the case back up again. Lift the drive clear. Fitting is the reverse of the above procedure.

Removing the PSU

- 1 Follow the procedures for removing the cover and the keyboard (above).
- 2 Disconnect the two faston connectors from the PCB, the connector on the PSU and the power cable to the disc drive.
- 3 Remove the warning sticker on top of the PSU cover. If the PSU is held in place by a plastic rivet, release the rivet jaws by pushing the pin in the centre of the jaw down, and then push the rivet itself down. If a selftapping retaining screw is fitted, this should be should be unscrewed. The PSU and its cover will then lift out:

Replacing the PSU

When replacing the PSU, ensure that the plastic insulating film is replaced underneath the PSU, and that the the cover is correctly located. Take care not to overtighten the self-tapping screws.

Removing the PCB

- 1 Follow the procedures above for the removal of the cover, the keyboard, floppy disc drive and the 1MByte RAM, if fitted.
- 2 Remove the power leads at the point where they connect to the PCB (red +5V and black OV).
- 3 Disconnect the two speaker leads, and remove the RH speaker (viewed from the front).
- 4 Unscrew the three self-tapping screws retaining the PCB, and the PCB and rear panel will lift out of

the case:

Fitting is the reverse of the above procedure — insert the PCB into the clips at the front edge of the case before lowering into place. Care should taken to ensure that the RESET key is not damaged.

Replacing the battery

The battery providing current to the real-time clock and battery-backed RAM is soldered to the PCB:

If this needs replacing, it will have to be removed using a soldering iron and a desoldering gun. Repair sites lacking the equipment and experience in this type of work should not attempt to carry it out, or damage to the PCB may result. Care should be taken to avoid shorting the battery — connecting the positive and negative terminals — even on a battery being discarded.

Service Manual

⊿₃₀₀₀ Fault diagnosis

Introduction

This chapter is a guide to the diagnosis and repair of basic faults in the A3000 computer system.

It consists of algorithms to enable you to trace & remedy faults in a 'dead' computer, followed by instructions for running the functional test software, designed to isolate faults in a computer which is working.

The next chapter 'Main PCB fault diagnosis and repair' is designed to help those repair centres equipped to do so, to diagnose and repair faults at component level on the main PCB.

Test equipment required:

- 100 MHz oscilloscope.
- DC Voltmeter.
- Earth Continuity tester.
- Serial port loopback plug (part number 0280,087). See the Appendix for details of the plug.
- 32 ohm impedance headphones.
- · IC extraction tools.
- Antistatic matting and wrist straps.
- Standard hand tools.

DANGER

AFTER REFITTING OR FITTING A REPLACEMENT ASSEMBLY, CARRY OUT EARTH CONTINUITY TESTING ON THE ASSEMBLED COMPUTER ACCORDING TO THE PROCEDURE GIVEN IN APPENDIX B.

WARNINGS

• Repairs to multi-layered PCBs:

The main PCB is a four-layer board.

Components should only be removed from the board using equipment specifically designed for this purpose. For details of suitable equipment available, contact Acorn Customer Service.

Repairs to surface-mounted devices: The ARM, MEMC, IOC AND VIDC ICs on the A3000 PCB are surface-mounted components. Do not attempt to remove them from the board and replace them unless you have the experience and the correct equipment to do so.

System clock failure:

If the computer is powered on for more than a few seconds and there is no system clock, there is a risk that all four ARM chips may be damaged, as well as the RAM.

Faulty MEMC:

if MEMC is faulty or the RAS/CAS signals are not being generated, the RAM may be damaged if the machine is left on too long. If you suspect a fault in these areas, scope the RAS and CAS lines for a few seconds in order to make sure that they are still active, then turn the machine off. Do not leave the computer on for more than a few seconds at a time.

Antistatic precautions:

It is a recommended requirement that anti-static precautions should be utilised at all levels of servicing, ie antistatic matting and wrist-straps.

Checking a 'dead' computer

Checking the sound system for faults

Note: Both SoundDMA and SoundChannel modules must be active (ie, not unplugged) before starting this test.

*TEST PROGRAM

10 REM > Check all channels
20 VOICES 8
30 FOR channel-1 TO B
40 OSCLI("Channelvoice "+STRS(channel)+" "+STR\$(2))
50 NEXT
60 FOR channel - 1 to 8
70 SOUND channel, -15, 100,24
80 PRINTchannel
90 k-GET
100 NEXT

RUN PROGRAM. PRESS A KEY AND REPEAT EIGHT TIMES. PRINTS CHANNEL NUMBER TO THE SCREEN AND PLAYS VOICE 2 FOR EACH CHANNEL.

Service Manual

Functional tests

Notes:

- Please read the following section 'General test procedure' before you carry out any of the tests.
- For details of how to repair the main PCB, see Main functional test.

Introduction

The A3000 test disc enables the engineer to test the functionality of the computer and Acorn upgrades, and to isolate any faults which may appear. The functional test cannot of course be run on a 'dead' computer — see the previous section for advice on diagnosing faults in 'dead' computers.

General test procedure

The A3000 computer, mouse, expansion cards, Test disc, Port Tester assembly and Econet cables are designed and specified by Acorn Computers Ltd and may not be changed without written consent from

Acorn. All items should be complete with the correct cables so that you can connect them to the A3000 computer.

Equipment required

- A3000 computer to be tested
- Mouse
- 3.5 inch Test disc, part number 0280,032
- Two ADFS 800k 'D' formatted, write enabled, 3.5 inch discs, to be labelled Scratch Disc and Data disc.
- Serial port loopback' plug for A3000 (Acorn part number (0280,087). See the Appendix for details.
- Epson FX80 or Olivetti JP101 printer
- Pair of 32 ohm stereo headphones
- Mono monitor
- Analogue RGB monitor.

Note: You can replace the specified printers with any other manufacturer's direct functional equivalent (in terms of BOTH hardware interface and software).

Removing the top cover of the computer main unit

Remove the top cover of the A3000 computer as detailed in the previous chapter 'Disassembly and Assembly'.

Connecting up the equipment

Connect the:

- serial port 'loopback' plug to the 'SERIAL' socket
- printer to the 'PARALLEL PRINTER' port

- · headphones to the 'Headphones 32 ohm' socket
- · monochrome monitor to the 'MONO VIDEO' socket
- analogue RGB monitor to the 'ANALOGUE RGB' socket
- · monitors to the mains supply
- A3000 computer to the mains supply.

Connecting and disconnecting the power

- You must CONNECT the power only when you have made all the other connections
- You must DISCONNECT the power before removing any other connections.

Validating the test equipment

Before carrying out any of the tests in this section, validate the test equipment using a known good system. If the test equipment fails, you should repair the test equipment and retest on a known good part.

Before you start

Before the start of each day or testing session, you must first:

- Adjust the colour monitor to ensure adequate contrast and brightness
- Inspect all the mechanical parts of the test equipment and replace any parts as necessary.

Also, if required:

- Ensure that the printer has sufficient paper
- Connect the printer to the mains supply. Do NOT turn on.

Saving and restoring the CMOS RAM

The tests alter the contents of the battery backed RAM that holds the A3000's configuration data. These must be saved before any of the tests is run, and restored when the last test is over.

- 1 Insert the Test disc into the floppy disc drive.
- 2 Switch on the monitors and computer.
- 3 Type F12 to get to the command line prompt.
- 4 At the RISC OS supervisor prompt (an asterisk) type the following;
 - DRIVE 0 CMOSLS
- 5 When prompted, replace the Test disc with an ADFS 800k write enabled disc, the Data disc.
- 6 Type 'S' to save the contents of the RAM, or 'L' to load a previously saved copy of the RAM.
- 7 Type the filename to use.
- 8 When prompted, replace the Test disc in the drive and press the *space* bar to continue.
- 9 Put the data disc in a safe place. Do NOT use this disc for the later floppy disc test.
- 10Type 'Q' to quit this option.

Carrying out the tests

There are two types of tests – subjective and non subjective. The test program passes or fails the equipment on the non-subjective tests; however, you must judge whether the equipment passes or fails the subjective tests. It is a good idea for testers to

familiarise themselves with the correct results given by a known good computer. In this way they will be in a better position to judge faulty results.

Performing soak tests

At the successful completion of a main PCB functional test, you should carry out a soak test. To do this, select the relevant option and then insert the scratch disc when prompted. The test runs for 12 hours. When the test is running the Caps Lock and Num Lock LEDs will flash, provided that no error has occurred. If a disc error occurs all the LEDs will be off (see table below); the disc error is also displayed on the screen. If the test is completed without an error then the Scroll Lock LED will flash and the Caps Lock and Num Lock LEDs will be extinguished.

	Num Lock	Caps Lock	Scroll Lock	Screen
No errors	Flashing	Flashing	Off	Running
Error	Off	Off	Off	Fail
Finished	Off	Off	Flashing	Pass

Warning

During the soak test the unit under test should not be subjected to mechanical shock or movement. The unit shall not be turned off unless the test has terminated – the pass or fail message will be displayed.

Safety check

After repairing a unit, and after the soak test, you should carry out the earth continuity check mentioned at the start of the chapter, followed by a further runthrough of the functional test, in case the earth check causes malfunction in the computer.

Repairing faults

When repairing an A3000 computer, you should repair the faults in the order in which they occurred during the test (ie repair the first recorded failure FIRST).

For further information on checking for faults and carrying out repairs, refer to the appropriate section of this manual.

Restoring the CMOS RAM

After passing the soak test, the unit under test needs to be restored to the customer's configuration. This is carried out by reloading the CMOS RAM from the data disc saved earlier, by selecting the Load/Save CMOS RAM option from the main menu. Then select the Load option after inserting the Data disc when prompted. See 'Saving and restoring the CMOS RAM' above for details of the test procedure.

Packing

After servicing, repack the A3000 computer in its box. To avoid damage, do NOT send the computer through the post or by courier unless it is in its original packaging. The original packaging should be checked for damage to the outer casing and poly inserts.

Service Manual

Main computer tests

Running the test

Run the main functional test software as follows: Ensure that CMOS RAM contents have been saved to disc by using the Load/Save CMOS RAM option described above. Then restart the system with a delete-poweron. To perform a delete-power-on, do the following: Whilst holding down the <Delete> key, turn the computer on. Note that the <Delete> key needs to be held down for several seconds. The *screen* should display the DESKTOP environment.

Note: A useful indication of the success of the delete-power-on sequence is the momentary appearance of a red border area on the screen.

Insert the Test disc. Hold down Ctrl, Shift and *, then press Break. The program will load from disc.

The 'Dealer Test Menu' is displayed:

```
A3000 Dealer Test Menu
1 Main Computer
2 Upgrades
Load/Save CMOS RAM
3 Soak Test
4 Quit
5 SELECT OPTION :
```

Machine identification test

Select the option Main computer.

After selecting and loading the required test program, the A3000 computer cycles through a series of tests beginning with the computer type/model test. This test is extremely fast and the type and model number of the computer is displayed immediately:

This computer is a BBC A3000 CHECK DESCRIPTION THEN PRESS <SPACE> TO CONTINUE

You should:

- 1 Check that the description displayed on the screen is correct.
- 2 If Unknown UUT is displayed then there is a memory fault.

Action If test falls

Change the main PCB, or see the next chapter for

repair.

If an RS232 or 1Mb RAM upgrade is fitted but not mentioned, switch off the unit under test, remove the upgrade and then continue the test. When the computer has passed the main test sequence, power down the unit and re-install the upgrade and then run the relevant upgrade test.

If the description is the same, press the space bar to continue to the next test.

Test options

```
TEST
OPTIONS
A AllTests Except Printer
B AllTests and Epson Printer
C AllTests and JP101 Printer
SELECT
OPTION
```

Select the test appropriate to the printer fitted. If you do not want to test the printer and do not need a printout of the results, you can select the 'All Tests Except Printer' option.

Memory

The functional test continues by testing the memory. The screen clears and displays the following messages:

Memory test

Phase one: incrementing pattern Phase two: TRUE hierarchy Phase three: FALSE hierarchy Phase four: Cycling bits PASSED/FAILED message Press SPACE to continue.

A failed message will end the tests. **Action if test falls**

Change the main PCB, or run the main memory test in the next chapter, and repair as necessary. If the test has PASSED, press the Space Bar to continue the test.

Service Manual

Battery backed RAM

The test continues by testing battery backed RAM. The following message is displayed on the screen:

Battery Backed Ram (BBR) test running. Reading BBR into main memory. Checking read/write function of BBR. Re-loading configuration parameters. PASSED/FAILED message PRESS <SPACE> TO CONTINUE

Press the Space Bar to continue the test.

Action if test falls

Check battery and connections, and check battery is charged. Re run the test. if the test still fails, replace the main PCB, or see the NVM and RTC tests in the next chapter, and repair as necessary.

Time

The functional test continues by testing the time and date settings. A series of options is displayed on the screen:

DO YOU WANT TO ?

- 1. CHECK THE DATE AND TIME
- 2. SET THE DATE AND TIME
- 3. CHECK THEN SET THE DATE AND TIME
- PRESS 1 OR 2 OR 3

The normal procedure is to select option 1. If you want to reset the time or date you would select 2 or 3. For example, you can:

1 Type 1 to check the date and time.

- 2 Check that the time is correct and the seconds are incrementing correctly.
- 3 To continue with the test, press the Space Bar.

Loudspeaker

The functional test continues by testing the operation of the loudspeakers. A short repeating sequence of four notes is played, first through the left and then the right speaker. The following message is displayed:

> LOUDSPEAKER TEST LISTEN AND CHECK SOUND THEN PRESS <SPACE> TO CONTINUE

You should:

- 1 Listen to the sequence of notes.
- 2 Check that the first four notes come from the left speaker and the second four from the right.
- 3 Check that the sound produced is correct. This is a subjective test, so if you detect any deviation, make a note of the fault.

Action if test falls

If no sound, or sound from one speaker only, then check speaker connections. If it still fails, substitute known good speakers and re-test. If the sound comes from one speaker only check that the headphone plug is inserted correctly. If test still fails, replace the main PCB, or carry out the Audio test in the next chapter, and repair as necessary

To continue with the test, press the space bar.

Headphones

The Functional test continues by testing the operation of the headphones. The following message is displayed as the test proceeds:

HEADPHONE TEST RUNNING LISTEN AND CHECK SOUND THEN PRESS <SPACE> TO CONTINUE

The test consists of a repeating sequence of eight musical notes. The first four notes are played on one headphone and the next four notes on the other headphone.

- 1 Put on the headphones.
- 2 Listen to the sequence of notes.
- 3 This is a subjective test, so if you detect any deviation in either headphone, note down the fault.

Action if test falls

If no sound or poor/faulty sound on known good headphones, replace the main PCB, or carry out the Audio test in the next chapter, and repair as necessary. Ensure the headphones are plugged in correctly.

To continue with the test, press the Space Bar.

Standard colour monitor

This test consists of a series of screen displays. You proceed through the test at your own pace.

The first display consists of a series of white lines radiating from the top lefthand corner. A cursor, in the shape of a bird, travels across the screen, starting from the bottom left and finishing at the top right. The features to check are:

- the accuracy of the lines
- the movement and integrity of the cursor.

This is a subjective test, so make a note of any faults. When you have finished looking at the screen display, press the Space Bar to move to the next display.

The next screen displays consist of four test cards. There is a test card for each of the three colour guns, and a 'grey scale' to test the three guns. The four test cards are:

- Red scale
- Green scale
- Blue scale
- Grey scale.

Each test card consists of 16 concentric circles beneath a horizontal band which is divided into 16 sections. A pale border highlights the left most eight sections of the band in order to distinguish the band from the background. The whole test card is surrounded by a contrasting border.

The purpose of the cards is to display 16 shades with the shade of the border as the middle of the range. You should observe:

- the 16 shades displayed
- the mid-coloured border
- the quality of the 'grey scale' display
- the integrity of each test card.

This is a subjective test, so make a note of any faults which you detect and when you are ready to continue press the Space Bar.

Action If test falls

if display rolls or is unstable, perform a Delete Poweron until the correct default value is obtained. The computer may have lost its configuration value for SYNC. Type at the keyboard:

•CON. SYNC 1 (RETURN)

Press RESET and see if if any change occurs. If no improvement is visible, change the main PCB, or perform the Video tests in the next chapter, and repair as necessary.

Keyboard Functional test

LEDs

This test checks that the LEDs (Caps Lock, Scroll Lock and Num Lock) are working.

Keys stuck

During this test, any keys or mouse buttons which are in a permanently closed position (ie stuck down; are displayed on the screen. If any keys are permanently closed, then it will be impossible to continue the test.

If everything is normal and no keys are stuck, then the last key pressed clears the screen and the Test program passes straight on to the next test. To carry out this test:

- 1 Follow the instructions which appear on the screen. These tell you when to check that each LED is ON and OFF.
- 2 Note down any LED failures before continuing the test. These are not recorded.
- 3 After each set of instructions press Break to move to the next instruction.

Mouse

This tests the three buttons on the mouse and the movement of the mouse to the left, right, up and down. Each of the mouse buttons (ie left, middle, right) are displayed on the screen in turn, together with a pointer. You should:

- 1 Move the mouse, until the pointer is within the box on the screen, then press the button displayed on the screen.
- 2 The box displayed on the screen should disappear and the next button appear.

If the button cannot be made to disappear then it will be IMPOSSIBLE to continue the test. You should repeat the test with the known good mouse to isolate the fault to either the keyboard or the mouse. Replace faulty components, then retest.

If everything is normal, the program moves on automatically to the next test.

Keys

The screen clears to show a representation of the keys in the main keyboard area. You need to test each key in turn in the correct order, ie work from the bottom line of the keyboard and from left of the keyboard to the right:

- 1 Press Caps Lock.
- 2 Check that the picture of the Caps Lock key disappears from the screen.
- 3 Press Alt and check that the picture of the Alt key disappears from the screen. If the picture of the key does not disappear from the screen then leave a small delay before pressing the next key.

If the screen stops clearing the characters as you press the keys, go back to the lowest, leftmost key remaining on the screen and start again from there.

4 Continue working along the bottom line. Then start working from left to right along the next line up.

Note: If you accidentally press two keys together, you will see both keys displayed on the screen. You should press Break to continue.

If the same fault occurs repeatedly or the picture of the depressed key refuses to disappear, then it will be IMPOSSIBLE to continue the test. You should replace the keyboard and start the whole test again.

- 5 When all keys in the main keyboard area have been pressed successfully, the screen clears and displays a diagram of the rest of the keyboard area. Again, press each key in turn, following the guidelines above.
- 6 When all the keys have been successfully pressed, the screen dears and displays the following message:

MOUSE TEST - PASSED

MAIN KEYBOARD TEST - PASSED NUMERIC KEYPAD TEST - PASSED PRESS RESET BUTTON TO END TEST

Press the RESET button on the side of the unit. You have now finished the keyboard functional test.

Action if tests fall

Make sure that the configuration items 'DELAY' and ' REPEAT are set to sensible values, such as Delay 32 and Data 4 — see the User Guide for details.

If the keyboard PCB is replaced, re-run the keyboard functional test.

Floppy disc drive

The Floppy disc drive test consists of two parts. The first part of the test checks the write protect

mechanism. The test disc must be write protected for this test to work. If the A3000 disc drive passes, the following message is displayed:

> FLOPPY DISC DRIVE TESTS Checking write protect PASSED Write Protect

Insert Scratch Disc Then press SPACE

Replace the Test disc with an ADFS D format write enabled disc, the scratch disc. Any data already on this disc may be destroyed, so it is best to use a blank formatted disc.

The test continues with disc Read, Write and Erase tests. Each test gives a PASSED/FAILED message.

Action if test falls

If the test fails, check that the configuration for 'STEP' and 'FLOPPIES' is correct. Check the disc drive ID switch is set to the correct position — normally '0' for single floppy drive, '1' for second floppy drive.

Swap the cable and drive for known good examples. Check power to to drive. If fault persists, change the main PCB.

RS 232

Ensure the A3000 RS232 test plug is fitted before carrying out this test (see the Appendix for details).

Action:

if the test fails, make sure that the configuration items ' BAUD' and 'DATA' are set to sensible values (Baud 4 and Data 4 for example). If the test still fails, after you have ensured that the loopback plug is functional on another unit, change the main PCB, or carry out the ' Serial socket' checks in the next chapter.

Printer

If one of the printer options was set, a test pattern is sent to the printer. The pattern comprises a repeated series of stepped lines each representing bits 0 to 7. You should look for missing or corrupted pattern. As this is a subjective test, make a note of any faults that you detect.

Action If test fails

if the test fails with a known good printer and cable connected, check the configuration settings for ' PRINTER' and 'IGNORE' are correct. If the fault still persists, change the main PCB, or see the next chapter for repair information.

On completing the tests

On completing the tests the screen displays:

TESTS COMPLETE TESTS COMPLETE TESTS COMPLETE TESTS COMPLETE TESTS COMPLETE TESTS COMPLETE

and outputs a message to the printer. This indicates that the A3000 computer has passed all the nonsubjective tests. However, the message Tests Complete should NOT necessarily be interpreted as a PASS, since you may wish to fail the computer on one of the subjective tests.

If a failure has been found during the non-subjective tests, the screen displays a FAILED message and lists the failures on the printer, assuming that the printer is functioning and that you did not select the 'All Tests Except Printers' option from the menu. Insert the Test Disc and press 'space' to return to the main menu.

Upgrade tests

To test Upgrades fitted to the computer, follow the procedure detailed at the start of the 'Main functional test' section for loading and running the software, then select option 2 from the main Dealer Test Menu. The Upgrades menu will appear:

	A3000	Upgrades	Test	Menu
1	Midi			
2	1M Byt	e Memory		
3	RS232			
4	Main M	lenu		
	SELE	CT OPTION		

Introduction

Type in the number of the test you wish to run; if it fails, substitute a known good upgrade. If the test still fails, replace the main PCB, or see the next chapter for repair information.

A3000 User Port MIDI Upgrade

Introduction

The UPM Upgrade functional test should be carried out whenever you install, repair or replace a UPM Upgrade. The suite of programs provide assistance when fault finding, by providing continuous looping.

Note: The MIDI Thru' port is NOT tested.

Equipment required

In order to carry out the test, you will require the following equipment:

- UPM Upgrade to be tested, which should have been installed
- A3000 Computer
- 3.5 inch Test Disc, write protected
- Monochrome or analogue RGB monitor.
- Acorn Econet cable
- User port loopback plug (wired as in the diagram below)
- · Dual trace oscilloscope, if you are fault finding.

Connecting the equipment

Connect the:

- · Computer to the monitor
- MIDI IN socket to the MIDI OUT socket, using the Econet cable
- · User port loopback plug to the User port
- · Monitor to the mains supply
- A3000 to the mains supply.

Running the test

When you have selected ${\tt Midi}$ from the Upgrades menu, the UPM test menu will appear:

A3000 UPM UPGRADE DEALER TESTS

```
1Functional test.
2Functional test soak.
3Services routines.
Enter choice
```

Select the appropriate test from the menu; all tests load automatically.

Selections 1 and 2 give a PASSED or FAILED message.

Selections 3 gives a further choice, after which a ' Running message indicates that the selected routine is functioning and the associated signals can be traced with an oscilloscope.

Action if test falls

Check that the test leads are working and are plugged into the correct sockets. if the test still fails then try using a known working PCB. If this passes then replace the MIDI podule under test, or else replace the main PCB.

1 Mbyte DRAM Expansion Test

Selecting 1M Byte Memory from the Upgrades test menu runs the memory upgrade test, which records its progress on the screen:

```
1 Mbyte Dram Expansion Test
Phase one: incrementing pattern ....
Phase two: TRUE hierarchy ......
Phase three: FALSE hierarchy ......
Phase four: Cycling bits .....
PASSED/FAILED message
Press SPACE to continue.
```

Action if test falls

If the computer fails the test, restart the system with a delete-power-on and run the test again. If the test still fails, check the connection between the main PCB and the memory expansion card. If test fails yet again, try a known working memory card. If this fails, then replace the main PCB, else replace the faulty memory card.

RS 232 test

When it has been selected, this test will automatically run and give a PASSED or FAILED message.

Action

If the test fails, make sure that the configuration items ' BAUD' and 'DATA' are set to sensible values (BAUD 4 and DATA 4, for example). If the test still fails, after you have ensured that the loopback plug is functional on another unit, change the main PCB. A diagram for the loopback plug is included in the Appendices.

A 3000 s Main PCB fault diagnosis & repair

Introduction

This chapter deals with fault diagnosis and repair of the main PCB at component level.

See the previous chapter for basic fault diagnosis before proceeding to this chapter.

Tools required

The suggested tools for fault diagnosis and repair of the A3000 PCB are as follows:

- 100 MHz oscilloscope
- DC voltmeter
- Earth continuity tester (see Appendix B)
- Chip extraction tools (68/84 pin)
- Soldering/desoldering workstations, capable of handling both conventional and surface-mounted devices
- Standard handtools.

It is a recommended requirement that anti-static precautions should be utilised at all levels of servicing, ie antistatic matting and wrist-straps.

DANGER

AFTER REFITTING OR FITTING A REPLACEMENT ASSEMBLY, CARRY OUT EARTH CONTINUITY TESTING ON THE ASSEMBLED COMPUTER ACCORDING TO THE PROCEDURE GIVEN IN APPENDIX B.

WARNINGS

- Repairs to multi-layered PCBs: The main PCB is a four-layer board. Components should only be removed from the board using equipment specifically designed for this purpose. For details of suitable equipment available, contact Acorn Customer Service.
- Repairs to surface-mounted devices: The ARM, MEMC, IOC AND VIDC ICs on the A3000 PCB are surface-mounted components. Do not attempt to remove them from the board and replace them unless you are appropriately trained in surface-mount technology and have the correct equipment to do so. f in doubt contact Acorn Customer Services.
- System clock failure: f the computer is powered on for more than a few seconds and there is no system clock, there is a risk that all four ARM chips may be damaged, as well as the RAM.
- · Faulty MEMC:

f MEMC is faulty or the RAS/CAS signals are not being generated, the RAM may be damaged if the machine is left on too long. If you suspect a fault in these areas, scope the RAS and CAS lines for a few seconds in order to make sure that they still active, then turn the machine off. Do not leave the computer on for more than a few seconds at a time.

Antistatic precautions:

It is a recommended requirement that anti-static precautions should be utilised at all levels of servicing, ie antistatic matting and wrist-straps.

System failure

If the system appears to be dead, proceed as follows:

WARNING: System clock failure

f the computer is powered on for more than a few seconds and there is no system dock, there is a risk that all four ARM chips may be damaged, as well as the RAM, due to lack of refresh on the DRAM:

- 1 Check RAS and CAS on R133, R129-132.
- 2 Check IC41 pin 19 and IC37 pins 1 and 2 for clock signals.
- 3 Check for a RAS signal on pin 5 of all the DRAMS.
- 1 Check for system RESET look for a delayed signal on power on (on IC13 pin 29).
- 2 Check that the signal RST driving IC 44 pin 44 and IC 37 pin 9 is not stuck high.
- 3 Check for main system clock of 24 MHz on LK28. f absent, check again on IC47, pins 3, 4, 5 and 6, and change IC47 if required. Finally, change the crystal X3.
- 4 Check SKT 15 for the following: 27C to be CLK 2, 28C to be CLK 8 and 29C to be Ref 8.
- 5 Check for clocks on IC44 pin 67 and IC41 pin 19.
- 6 Check for the presence and validity of the processor addresses and PHI 1 clock. This can be done by examining the signals on IC 29 pins 12 to 19, IC 30 pins 12 to 19 and IC 31 pins 12 to 15, whilst holding down the RESET button (RESET can be activated by pressing the RESET key, or by short-circuiting SKT3 pin 15 and 16). When RESET is held down, the address lines will increment (not AO and AI) . Should none of the signals toggle, check for the PHI 1 clock on the appropriate IC, at its source on IC 44 pin 66, and on R135. Also check to see that addresses are being presented to the inputs of the above devices. Change ICs 29, 30 or 31 as appropriate, or if no addresses are present, change the ARM — IC 37.
- 7 Check for all address lines on MEMC, 1C44, again with RESET held down.Check for the presence of LA2 to LA6 and LA16 to LA21 on 1OC IC13.
- 8 The data bus can be inspected by probing on resistors R49 to R65, R115 to R128 and R87. Note that MEMC1A will not enable the ROMs whilst RESET is activated. By their nature, it is difficult to interpret the signals seen, so just check for the ability of the signals to move between logic states. None of these lines should be stuck permanently high, low or in a midrail state. Any of these resistors may be removed in order to isolate the DRAM bank from the CPU, thus easing the tracing of shorts, etc. Also check for short or open circuits on the BDATA bus, IC 43 pins 12 to 19 and IC 46 pins 12 to 19.

- 9 Check for shorts on the DRAM address bus, either on the DRAMS themselves or on IC 44 pins 28 to 37. Check all data signals on IC41.
- 10Check for Data and Address signals on all four of the ROMs. This is especially important if a ROM change has been carried out, as misuse of a screwdriver during ROM removal may have

damaged or broken PCB tracks, socket or ROM legs (an IC extraction tool should have been used).

11 Check the processor interrupt lines FIO and IRO pins 8 and 7 on ARM IC 37. Neither of these should be stuck low. IRO can be expected to pulse low, FIO should be high. These interrupts should also be checked at their source on IOC IC13 pins 50 and 51. Should these also be low, the interrupt source can be traced by examining all interrupt inputs to IOC IC 13 on pins 30 to 42 (note that pins 30, 31 and 42 are active high logic).

Service Manual

Test ROMs

The A3000 Test ROMs are designed to assist in the repair of all A3000 systems where 'Failure to Initialise' faults are present – ie the machine appears to be 'dead' on power-up.

The ROMs contain software which can be categorised in two sections:

- 1 Main memory test routines
- 2 Test routines for use under repetitive reset.

To install the test ROMs, carefully remove the RISC OS ROM set, ICs 14, 15, 16 and 17, and replace them with the test ROMs, 1, 2, 3 and 4 respectively:

The test ROMs use the bare minimum of hardware to run the system – remove/disconnect all peripherals not needed for the tests, although a keyboard is needed. A printer can also be connected if required.

Main memory test

Providing that the ARM, MEMC and VIDC are functioning, the test ROMs will auto-boot into the menu-driven display below. At any point in the operation of the test ROMs, pressing the RESET key or re-powering the machine will re-start the program and re-display the menu:

0123456789012345678901234567890123456789012345678901234
Al diagnostic test roms memory size -60xx00000 bytes
1 CVCITC MEMORY RECR WITH DETNIMOTIN
2 CVCLIC MEMORY TEST
2. CICLIC MEMORI IESI
SELECT:

The memory test checks memory according to memory size selected.

It is possible that faulty memory may lie in the region

designated as 'screen memory'. f this occurs, the video display may become unreadable. For this reason, the sequence 0123456789 is repeated across the top line of the display. Every 4 digits represent a 32-bit word. Watch for missing or corrupted display.

As the start of the screen memory is known to be at physical address &2000000, it should be possible to determine the exact device that is faulty by examining the corruption pattern on the display.

The default 'memory size' is &100000 bytes (1 Mbyte), however this may be cycled through 0.5, 1, 2 and 4 Mbyte memory sizes by pressing the 'M' key.

When using the ROMs on a machine having memory content other than 1 Mbyte, the video display may at first appear out of line or incorrect. In this instance press the M key repeatedly until the required memory size has been selected.

The memory test is cyclic and on completion of each full memory test a full stop (.) will be displayed until it completes one line of the screen. The next completed cycle will move the lefthand full stop down one pixel, and then in sequence across the screen. The 0.5 Mbyte test takes between 3 and 4 seconds to complete whilst the 4 Mbyte test takes about 29 seconds.

If for some reason the video display is completely blank or unreadable (eg because of a video fault), a printed output may be obtained by selecting option 1, the output being produced at the printer port as well as on the VDU.

If an error is found in the memory, the display will show: AT ADDRESS & nnnnnnn WROTE & pppppppp READ *********

AT ADDRESS &nnnnnnn wROTE &pppppppp READ XXXXXXXXXX XXXXXXXXXXXXXXXXX

(The message will be displayed on one line) where nnnn is the faulty address, pppp is the data written to that address and **xxxxxxx** is the data read back from that address in binary form. The least significant bit is the righthand bit.

The memory tests do not terminate unless an error is found, in which case after reporting 8 or 9 errors, the test will terminate. Any error will have a cascading effect, so it is good practice to repair the first error displayed first.

Note: An additional check is made on the state of CMOS RAM control lines CO and C1 at the beginning of the test, before the display. If either of these lines are short-circuit to 0 Volts, the Test ROMs will indicate this on power-up.

Physical Address	IC Numbers
2000000	IC21 IC20
k2000001	IC22 IC23
<u>2000002</u>	IC24 IC25
\$2000003	IC26 IC27
epeat until	
20FFFFF	
3 2100000	upgrade
0	upgrade
21FFFFF	

Repetitive reset test

This section of test code is intended for use when the main memory test menu fails to initialise.

To make use of this section of the ROMs the following test equipment is required:

- Oscilloscope
- Signal or pulse generator

The purpose of the code is to produce certain signals around specific areas of the PCB. These signals may then be monitored using the oscilloscope to assess the operation of that area of the circuit. A suitable square wave or, preferably, a negative-going pulse generator output at 10 kHz should be connected to the reset line via a component connected to SKT3 pin 13.

After setting the border colour to white, the signals should be observable in the following order, which checks the output selection of IC13 (IOC):

SVPMD SVPMD SVPMD	low low low	IC44 pin 52 and IC37 pin 10	
OC CS & S1 OC CS & S2 OC CS & S3 OCCS&S4 OCCS&S5 OCCS&S5 OCCS&S6 OC CS & S7	hi hi hi hi hi hi	IC13 pin 67	+ pin 63 + pin 62 + pin 61 + pin 59 + pin 58 + pin 57 +pin 56
nB/W nB/W nB/W	low low low	IC44 pin 63 and IC37 pin 84	
IOC CS & CO IOC CS & C1 IOC CS & C2 10C CS & C3 IOC CS & C4h IOC CS & C5 IOC CS	hi hi hi hi hi hi	IC13 pin 67	+ pin 44 + pin 45 + pin 46 + pin 47 + pin 48 + pin 49

Repetitive reset test assembler listing

LDRT LDRT LDRT LDR	r0, r0, r0, r1,	[r5] [1-5] [r5] iocmof	;SVPMD pin low ; ; ;re-load ioc base addr.))continual toggle of:-) —offset
LDR LDR	1-0, r0,	[r1,r6]! [r1, r6]!	;SVPMD pin high ;IOC CS pin high	;Sl ioc hi
LDR	r0,	[r1, r0]! [r1 r6]]	;IOC CS pin high	;52 10C MI
LDR	r0,	[r1, r6]!	; TOC CS pin high	:S4 ioc hi
LDR	r0,	[r1, r6]!	;IOC CS pin high	;55 ioc hi
LDR	r0,	[rl, r6]!	;IOC CS pin high	;56 ioc hi
LDR	r0,	[r1, r6]!	;IOC CS pin high	;S7 ioc hi
LDRB	r0,	[r5]	;nB/W pin high)
LDRB	r0,	[r5]	;nB/W pin high]
LDRB	r0,	[r5]	;nB/W pin high)
MOV	rl	#&FE0000	;	
STR	r1,	[r7]	; set CO)
MOV	rl	#&FD0000	;]
STR	r1,	[r7]	; set Cl]
MOV	r1	#&FB0000	;)
STR	r1,	[r7]	; set C2)
MOV	rl	#&F70000	;) I.O.C.
STR	r1,	[r7]	; set C3)
MOV	rl	#&EF0000	;)
STR	r1,	[r7]	; set C4)
MOV	r1	#&DF0000	;)
STR	rl,	[r7]	; set C5)
MON	rl	#&FE0000	;	
STR	r1.	[r7]	; reset all	

Service Manual

Video faults

Video failure

- Check for +5 V on both ends of L18. If open circuit then check C100 for a short circuit. Replace L18 and C100 as appropriate. Also check for 3.5 Volts (approx.) on IC 41 pin 43. Should this not be present then check R109, D16 and C93.
- 2 Check for a 24 MHz clock on IC41 pin 19. f missing then check continuity to and through LK28 and R138.
- 3 Check for video data on IC41 pins 39, 40 and 41. f not present, check power supply to IC41.
- 4 Check for short circuits on signals VIDRQ and VIDAK.
- 5 Check connection of all data lines to VIDC (IC41).
- 6 Finally, change IC41.

Unstable or scrolling display

The computer may have lost its configuration value for SYNC. Type at the keyboard:

*CON. SYNC 1 (RETURN)

Press reset RESET and see if if any change occurs. Investigate configuration failure.

Check for CSYNC signal on SK14 pin 4. If not present, trace back through LK24, R535 and IC40, finally changing VIDC 1041.

Check settings of LK24 and LK27 (see Links table).

Corrupted display

If the display breaks up around its edges and spurious characters appear then investigate the system oscillator. Suspect IC47or X3.

Check DRAM using the memory test routines.

Colours incorrect or missing

With a full white screen, VIDC IC41 pins 39, 40 and 41 should all have the same signal on them. f not, check pin 43, which should show approximately 3.5V; if not, check R109, C93 and D16. Finally, change VIDC, IC41.

Trace each signal through the periphery circuitry and out to SK14, where the voltage on R, G and B should be the same.

Audio

Test the audio with both headphones and internal speakers. Do not forget to issue *SPEAKER ON and *VOLUME 127 commands, if required, making sure that the sound modules are active (see the 'No sound'

algorithm in the previous chapter).

If either of the speakers fail, but the headphone socket functions normally, check connections to the main PCB via LK22 and LK23, and check IC32 or 1C38 pin 5 for a signal of 2-3 V amplitude. If no signal is present on pin 5 but can be found on pin 3, change IC32 or 38. Check continuity through R76 and R45 and check that IC13 pin 49 is not stuck high.

If there is no audio at all, first check for +5 V on both ends of L19. f this is open circuit, check the condition of C108 before replacement. Check for about 3 V on VIDC IC41 pin 12. f there is no voltage or a different one, check R500, C107 and C108.

A low amplitude signal should be found on VIDC IC41 pins 13, 14, 15 and 16. f not, change VIDC. These signals can be traced through the peripheral circuitry and out to 011 and 012. The signal amplitude at these points should be about 1.3 V pk-to-pk.

Check for short or open circuit on signals SNDAK and SNDRQ on VIDC IC41 pins 9 and 24.

Configuration, NV memory and RTC

If the NVM suffers data retention problems and the RTC fails, then, with the computer power off, check for about 1.1 V on IC6 pin 8. If this voltage is not present, check R3 and R7. If less then 1V, change the battery B1 and check the operation of D2 and C15.

If the NVM IC6 consistently fails on the same data bits, change the device.

If the clock fails to run or runs inaccurately, check and if necessary replace X2. LK7 allows access to the clock signal.

Service Manual

Peripheral faults

Keyboard and mouse

Make sure that the configuration items DELAY and REPEAT are set to sensible values - see the A3000 User Guide.

Check computer interface by swapping to a known good keyboard or mouse.

Floppy disc drive

Make sure that the configuration items STEP and FLOPPIES are correctly set. Check that the disc drive ID selection switch is in the zero position. Swap the disc drive for a known good drive and cable. f this also fails, check the power supply connection for +5 V and 0 V.

If the computer is not recognising the drive, check that all cables are connected both to the drive and to the PCB, and that power is present on the power cable. Also check that the drive ID plate has not fallen off inside the drive and jammed it.

Printer

Make sure that the configuration items for IGNORE and PRINT are set to sensible values. Swap the printer for a known good printer and cable.

If the printer fails completely, check for a STROBE signal on Q1 collector; trace back through R36 and IC18. Also check for shorts or open circuits on PACK and PBSY on pins 2 and 4 of 1C9, and 11 and 13 of IC8.

If the data printed is incorrect, check the continuity of the data lines into and out of IC 11, though the series resistors and onto SK 10.

If both the printer and the floppy disc drive fail, change IC 18.

Capacitors C23 to C33 on the printer port occasionally go open circuit. These should be checked if printer problems are being experienced.

Serial port (upgrade)

Check that the upgrade has been correctly installed. Make sure that the configuration items BAUD and DATA are set to sensible values. Check for =+10V on IC7 pin 1 and =-10V on pin 24. Check for the clock on IC 1 pins 6 and 7; change X1 if faulty. f OK, change IC1 and IC7.

Expansion cards

Run the relevant expansion card test; if it fails, substitute a known good expansion card. f the test still fails, check through System failure, tracing all signals through to the expansion card socket SK15 (external) or SK3 and 11 (internal). f necessary, replace expansion card backplane.

WARNING

Power down the computer before fitting or removing an external expansion card.

∕a₃₀₀₀ Parts lists

The parts lists in this chapter detail the components used in the manufacture of the computer and its upgrades. Contact the Spares Department of Acorn Computers Limited (account holders only), or its authorised dealers and Approved Service Centres, for information as to which parts are available as spares.

Final assembly parts list

	Part no.	Description	Qty
$\begin{matrix} 1 & 3 & 4 \\ 5 & 7 & 8 \\ 9 & 101 & 112 \\ 14 & 5 & 111 \\ 14 & 5 & 111 \\ 16 & 17 & 111 \\ 17 & 111 & 111 \\ 17 & 111 \\ 18 & 120 & 120 \\ 21 & 210 & 210 \\ 22 & 21$	0060,000/A 0176.005 0276,038 0276,106 0180,000 0180,010 0160,011 0180,012 0180,081 0260,061 0260,063 0280,073 0260,074 0260,075 0260,077 0280,073 0260,077 0280,078 0480,041 0480,042 0480,042 0480,044 0480,042 0480,044 0480,044 0480,047 0860,024 0480,044 0940,007 0882,770 0882,771 0882,711 0862,711 0862,711 0862,711 0882,770 0882,971 0884,048 0691,026 0890,013	FINAL ASSEMBLY DRAWING DISC DRIVE CABLE ASSY 'NO ECONET' LABEL RESET BUTTON AVON MAIN PCB ASSY 22W 240V PSU KEYBOARD (UK) MAINS CABLE ASSY SPEAKER ASSEMBLY 3.5x1" 1MB DISC DRIVE LOWER MOULDING UPPER MOULDING BATTERY COVER BLANKING PANEL LOCK PLATE CABLE RESTRAINT PLATE PSU COVER PSU INSULATION SHEET BBC/LED LABEL BASE LABEL 'NO SERIAL' LABEL REAR MAINS LABEL ACORN LOGO LABEL GMAT CBL RND 7,4Dx4T BLK ADH HOT-MELT SCW No2x1/4" PLST PAN POS SCW M04x3/4" PLST PAN POS SCW M06x3/8" PLST PAN POS SCW No6x3/8" PLST PAN POS WSHR M2,5 SPRF IT STL RIVET PLST DOME 3,1Dx4THK LABEL HIVOLT40mmSq MAX SA FOOT S/A RUBR 8Dx2.5Hmm	1* 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1

'per batch

PCB assembly parts list

ltem	Part no.	Description	Qty
1 2 3 6 9	0260,000 0160.000/A 0180,000/C 0280,072 0800,070	BARE PCB AVON PCB ASSEMBLY DWG AVON PCB CIRCUIT DIAGRAM PCB BACK PANEL CONR 2W SHUNT 0.1"	1 1* 1* 1 10
10 11 12 13 15	0800,126 0800,128 0600,132 0800,140 0870,422	(FITTED TO ERT/-20,24-29) SKT IC 24/0.3" NORM (IC7) SKT IC 28/0.6" NORM (IC1) SKT IC 32/0.6" SUPA (IC14-17) SKT IC 40/0.6" NORM WIRE 25SWG CPR TIN A/R (Y1 Y2 Y3)	1 1 4 11C2
17 19	0902,004 xxxx,xxx	LABEL SERIAL PCB 15x50mm RIVET AVDEL 11070312 (SKIS)	1 2
R1 R2 R3 R4 R5	0521,102 0521.102 0521,181 0521,331 0521,271	RES 1K0 SW 5% 0W25 1206 RES 1 K0 SMD 5% 0W25 1206 RES 160R SMD 5%0W25 1206 RES 330R SMD 5% 0W25 1206 RES 270R SMD 5% 0W25 1206	1 1 1 1
R0 R7 R9 R10 R11 R12 R13 R15 R15 R15	0521,181 0521.101 0521223 0521,472 0521,472 0521,472 0521,472 0521,331 0521,222	RES 160R SMD 5%0W25 1206 RES 100R SMD 5% 0W25 1206 RES 22K SMD 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206 RES 1 K0 SMD 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206 RES 4K7 SW 5%0W25 1206 RES 330R SMD 5% 0W25 1206 RES 2K2 SMD 5% 0W25 1206	N/F 1 1 1 1 1 1 1
R16- R24 R25	0521,220	RES 22R SW 5% 0W25 1206	9
R25- R29 R30 R31 R33 R35 R36 R36 R39 R40 R443 R445 R445 R445 R445 R445 R445 R447 R48- R49-	0521,472 0521,102 0521,472 0521,472 0521,103 0521,103 0521,331 0521,331 0521,102 0521,104 0521,104 0521,104 0521,104 0521,104 0521,104 0521,102 0521,472 0521,562 0521,681 0521,100 0521,122	RES 4K7 SW 5%0W25 1206 RES 1K0 SW 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206 RES 10K SMD 5% 0W25 1206 RES 10K SMD 5% 0W25 1206 RES 330R SW) 5% 0W25 1206 RES 330R SW) 5% 0W25 1206 RES 100K SMD 5% 0W25 1206 RES 1K0 SMD 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206 RES 5K6 SMD 5% 0W25 1206 RES 680R SW 5% 0W25 1206 RES 1K2 SMD 5% 0W25 1206	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R65 R66 R67-	0521,680 0521,331	RES 66R SMD 5% 0W25 1206 RES 330R SMD 5% 0W25 1206	17 1
R71 R72-	0521,220	RES 22R SMD 5% 0W25 1206	5
R75 R76 R77 R76 R80 R80 R81 R82 R83 R84 R85 R84 R85 R86 R87	0521,472 0521,562 0521,681 0521,100 0506,250 0521,330 0521,332 0506250 0521,332 0506250 0521,332 0507,223 0507,223 0507,223	RES 4K7 SMD 5% 0W25 1206 RES 5K6 SW 5% 0W25 1206 RES 660R SMD 5% 0W25 1206 RES 10R SMD 5% 0W25 1206 RES 332R MF 1%0W25 E96 RES 33R SMD 5% 0W25 1206 RES 22K MF 1% 0W25 1206 RES 332R ME 1% 0W25 E96 RES 332R ME 1% 0W25 E96 RES 3K3 SMD 5% 0W25 1206 RES 3K3 SMD 5% 0W25 1206 RES 22K MF 1% 0W25 RES 68R SMD 5% 0W25 1206	4 1 1 1 1 1 1 1 1 1

ſ

Item	Part no.	Description	Qty	Item	Part no.	Description	Qty
R88	0521,332	RES 3K3 SMD 5% 0W25 1206	1	R562			N/F
R89 R90	0521,332	RES 3K3 SMD 5% 0W25 1206 RES 56R SMD 5% 0W25 1206	1	R563 R564	0521.473	RES 47K SW 5% 0W25 1206	N/F
R91	0507,223	RES 22K MF 1% 0W25	1	R565	0521,473	RES 47K SMD 5% 0W25 1206	1
R92 R93	0521,332 0507,223	RES 3K3 SMD 5% 0W25 1206 RES 22K MF 1% 0W25	1	R567-			N/F
R94 R95	0521,560 0507,223	RES 56R SMD 5% 0W25 1206 RES 22K MF 1% 0W25	1	R571 R572	0521,473 0521,221	RES 47K SMD 5% 0W25 1206 RES 220R SMD 5% 0W25 1206	5 1
R96	0506,250	RES 332R MF 1% 0W25 E96	1	R573- R579			N/F
R96	0507,223	RES 22K MF 1% 0W25	1	11070			1 1/1
R99 R100	0507,223	RES 22K MF 1% 0W25 RES 33R SMD 5% 0W25 1206	1	СІ	0681,001	PCPCTR DCPLR 33n SMD 1210	1
R101 R102	0521,332 0506 161	RES 3K3 SMD 5% 0W25 1206 RES 43R2 ME 1% 0W25 E96	1	C2 C3	0631.033 0640.473	CPCTR CPLT 33p 30V 2%	1
R103	0506,161	RES 43R2 MF 1% 0W25 E96	1	C4	0610,010	CPCTR TANT 10u 10V 20%	1
R104 R105	0521,681	RES 680R SW 5%0W25 1206	1	C6-	0001,001		-
R106 R107	0521,103 0521,103	RES 10K SMD 5%0W25 1206 RES 10K SMD 5% 0W25 1206	1	C10 C11	0635,100 0681,001	CPCTR ALEC 100 16V RAD CPCTR DCPLR 33n SMD 1210	5 1
R108	0521,331	RES 330R SMD 5% 0W25 1206	1	C12 C13	0635230	CPCTR ALEC 220u 16V RAD	1
R110-	0521,105			C14	0635,230	CPCTR ALEC 220u 16V RAD	1
R115 R114	0506,300 0521,122	RES 1K00 MF 1% 0W25 E96 RES 1K2 SMD 5% 0W25 1206	4	C15 C16	0635,470 0631,012	CPCTR ALEC 470 160 RAD CPCTR CPLT 12p 30V 2%	1
R115- R128	0521 680	RES 68R SMD 5% 0W25 1206	14	C17 C18	0681,001 0681 001	CPCTR DCPLR 33n SMD 1210 CPCTR DCPLR 33n SMD 1210	1
R129-	0521,000			C19	0635,100	CPCTR ALEC 10u 16V RAD	1
R133 R134	0521,220	RES 22R SMD 5% 0W25 1206 RES 1K2 SMD 5% 0W25 1206	5	C20 C21	0681,001	CPCTR DCPLR 33n SMD 1210 CPCTR DCPLR 33n SMD 1210	1
R135 R136	0521,330 0521 221	RES 33R SMD 5% 0W25 1206 RES 220R SMD 5% 0W25 1206	1	C22 C23	0610,010 0631.100	CPCTR TANT 10u 10V 20%	1
R137	0521,103	RES 10K SMD 5% 0W25 1206	1	C24-	0630 220	CECTE CELT 2n2 30V 10%	Q
R130 R139	0521,680	RES 68R SMD 5% 0W25 1206 RES 68R SMD 5% 0W25 1206	1	C32	0631,100	CPCTR CPLT 100p 30V 2%	1
R140 R141	0521,680 0521,220	RES 68R SMD 5% 0W25 1206 RES 22R SMD 5% 0W25 1206	1 1	C33 C34	0631,100 0610,010	CPCTR CPLT 100p 30V 2% CPCTR TANT 10u 10V 20%	1
R142 R143	0521,220	RES 22R SMD 5% 0W25 1206 RES 22R SMD 5% 0W25 1206	1	C35 C36	0681,001 0681 001	CPCTR DCPLR 33n SMD 1210 CPCTR DCPLR 33n SMD 1210	1
R144	0521,220	RES 10K SMD 5% 0W25 1206	1	C37	0681,001	CPCTR DCPLR 33n SMD 1210	1 1
R145 R500	0521,472 0521,333	RES 33K SWD 5% 0W25 1206 RES 33K SWD 5% 0W25 1206	1	C39	0621,470	CPCTR ALEC 47u 10V AX	1 IN/F
R501 R502	0521,103 0521 472	RES 10K SMD 5% 0W25 1206 RES 4K7 SMD 5% 0W25 1206	1	C40- C47	0681,001	CPCTR DCPLR 33n SMD 1210	8
R503-	0521 680	DES 68D SMD 5% 0W25 1206	16	C48 C49	0681,003	CPCTR DCPLR 100n SMD 1210 CPCTR DCPLR 100n SMD 1210	1
R519-	0521,000		10	C50-	0691 001		5
R529 R530	0521,104 0521,102	RES 100K SMD 5%0W25 1206 RES 1K0 SMD 5% 0W25 1206	11 1	054 C55	0610,010	CPCTR TANT 10u 10V 20%	5 1
P531 R532	0521,181 0521 820	RES 180R SMD 5%0W25 1206 RES 82R SMD 5% 0W25 1206	1	C56 C57	0681,003 0610,010	CPCTR DCPLR 100n SMD 1210	1
R533	0521,331	RES 330R SMD 5% 0W25 1206	1	C58	0681,003	CPCTR DCPLR 100n SMD 1210	1
R534 R535	0521,680	RES 68R SMD 5% 0W25 1206 RES 68R SMD 5% 0W25 1206	1	C60	0635,470	CPCTR ALEC 47u 16V RAD	1
R536 R537	0521221 0521.680	RES 220R WO 5% 0W25 1206 RES 68R SMD 5% 0W25 1206	1	C61 C62	0635,230 0640,473	CPCTR ALEC 220u 16V RAD CPCTR CER 47n 30V 80%	1
R538	0521,221	RES 220R SMD 5% 0W25 1206	1	C63	0635,470	CPCTR ALEC 47u 16V RAD	1
R539 R540	0521,680	RES 220R SMD 5% 0W25 1206 RES 220R SMD 5% 0W25 1206	1	C65	0642,103	CPCTR ALEC 100u 25V RAD	1
R541 P542	0521,680 0521,221	RES 68R SW) 5% 0W25 1206 RES 220R SMD 5% 0W25 1206	1	C66 C67	0635,230 0635,047	CPCTR ALEC 2200 16V RAD CPCTR ALEC 407 16V RAD	1
R543-	0501 100			C68	0640,473	CPCTR CER 47n 30V 80%	1
R546 R547	0521,102	RES 4K7 SMD 5% 0W25 1206	4	C70	0642,103	CPCTR ALEC 1000 25V RAD	1
R548 R549	0521,472 0521,104	RES 4K7 SMD 5% 0W25 1206 RES 100K SMD 5% 0W25 1206	1 1	C71 C72	0681,003	CPCTR DCPLR 100n SMD 1210 CPCTR DCPLR 100n SMD 1210	1
R550 R551	0521,472	RES 4K7 SMD 5% 0W25 1206	1	C73 C74	0681,003 0640 473	CPCTR DCPLR 100n SMD 1210 CPCTR CER 47n 30V 80%	1
R552	0521,472	RES 4K7 SMD 5% 0W25 1206	1	C75	0630,220	CPCTR CPLT 2n2 30V 10%	1
R553 P554	0521221 0521,103	RES 220R SMD 5% 0W25 1206 RES 10K SMD 5% 0W25 1206	1	C76 C77	0650223	CPCTR MPSTR 22n 50V 10%	
R555 R556			N/F N/F	C78 C79	0610,010 0630.100	CPCTR TANT 10u 10V 20%	1
P557	0521,473	RES 47K SMD 5% 0W25 1206	1	C80	0650,106	CPCTR MPSTR 100n 50V 10%	1
R558 R559			N/F N/F	C82	0630,220	CPCTR CPLT 2n2 30V 10%	
R560 R561	0521,331 0521 271	RES 330R SMD 5% 0W25 1206 RES 270R SW 5% 0W25 1206	1 1	C83 C84	0621,470 0681,003	CPCTR ALEC 47u 10V AX CPCTR DCPLR 100n SMD 1210	1
1.001	552 I,21 I				. ,		

Service Manual

ltem	Part no.	Description	Qty	ltem	Part no.	Description	Qty
C85 C86 C87 C88	0630,100 0630,220 0681,001 0650,106	CPCTR CPLT 1n 30V 10% CPCTR CPLT 2n2 30V 10% CPCTR DCPLR 33n SW) 1210 CPCTR MPSTR 100n 50V 10%	1 1 1 1	01 02- 010 011	0780,241 0783,907 0780,241	TRANS 8C239 NPN 0.2"P LDS TRANS 2N3906 PNP .2"P LDS TRANS BC239 NPN 0.2"P LDS	1 9 1
C89 C90 C91 C92	0610,010 0630,220 0630,220 0650,223	CPCTR TANT 10u 10V 20% CPCTR CPLT 2n2 30V 10% CPCTR CPLT 2n2 30V 10% CPCTR MPSTR 22n 50V 10%	1 1 1	012 D1 02	0780,241 0794,005	TRANS BC239 NPN 0.2-P LDS DIODE SI 1N4005 600V 1A	1 N/F 1
C93 C94	0635,100 0610,010	CPCTR ALEC 10u 16V RAD CPCTR TANT 10u 10V 20%	1 1	D3- D16	0794,148	DIODE SI 1N4148	14
C95 C96 C97 C98 C99	0635,470 0640,473 0635,100 0681,001 0681,001	CPCTR ALEC 47u 16V RAD CPCTR CER 47n 30V 80% CPCTR ALEC 10u 16V RAD CPCTR DCPLR 33n SW) 1210 CPCTR DCPLR 33n SW) 1210 CPCTR DCPLR 33n SW) 1210	1 1 1 1	B1	0817,013	BAT NICAD 1V2 280mAH PCB	1
C100 C101 C102 C103	0010,010	CPCTR TANT TOU TOV 20%	N/F N/F N/F	L1- L14 L15	(0500,000 (0870,420	RES ZERO-OHM 0W25 (0.6"ptch WIRE 22SWG TIN (OPTION)	14 N/F
C104 C105 C106 C107 C108 C109 C110	0681,001 0681,001 0640,473 0610,010 0621,470 0621,470	CPCTR DCPLR 33n SMD 1210 CPCTR DCPLR 33n SW) 1210 CPCTR CER 47n 30V 80% CPCTR TANT 10u 10V 20% CPCTR ALEC 47u 10V AX CPCTR ALEC 47u 10V AX	N/F 1 1 1 1	L16 L17 L18 L19 L20 L21	0860,015 0860,015 0860,012 0860,005 0860,015 0860,015	CHOKE RF FE BEAD CHOKE RF FE BEAD CHOKE RF 2u2H AX 0-30 COIL RF 33uH AX 0-45 CHOKE RF FE BEAD CHOKE RF FE BEAD	1 1 1 1 1
C111 C112 C113 C114 C115 C116 C500-	0610,010 0635,230 0681,001 0631,010 0631,033 0630,270	CPCTR ALEC 220u 16V 20% CPCTR ALEC 220u 16V RAD CPCTR DCPLR 33n SMD 1210 CPCTR CPLT 10p 30V 2% CPCTR CPLT 33p 30V 2% CPCTR CPLT 2n7 30V 10%	1 1 1 1 1	LK 1- LK16 LK17 LK18 11(19 LK20	0800,050 0800,050 0800,051 0800,051	CONR 2W WAFR 0.1" ST PCB CONR 2W WAFR 0.1" ST PCB CONR 3W WAFR 0.1" ST PCB CONR 3W WAFR 0.1' ST PCB	N/F 1 1 1
0506	0681,001	CPCTR DCPLR 33n SMD 1210	7	LK21 LK22	0800,458	CONR 2W WAFR 0.1" ST LK	N/F 2 2
IC1 IC2 IC3 IC4 ICS IC6 IC7	0280,022 0740,038 0742,145 0742,145 0708,583	IC KBD CNTRLR (0708,051) IC 7438 TTL 14/0.3" IC 74LS145 TTL 16/0.3 IC 74LS145 TTL 16/0.3 IC 8583 RTC RAM 8/0.3"	N/F 1 1 1 1 N/F	LK23 LK24 LK25 1K26 LK27 LK28 LK29 LK30	0800,458 0800,051 0800,050 0800,050 0800,050 0800,050 0800,050 0800,050	CONR 2W WAFR 0.1" ST LK CONR 3W WAFR 0.1" ST PCB CONR 2W WAFR 0.1" ST PCB	2 1 1 1 1 1 1
IC8 IC9 IC10 IC12 IC13 IC14 IC15 IC16 IC17 IC18 IC19	0749,014 0747,004 0747,074 0742,374 0747,138 2201,368 0283,022 0283,023 0283,024 0283,025 0747,574	IC 74HCT14 CMOS 14/0.3" IC 74HC74 CMOS 14/0.3" IC 74HC74 CMOS 14/0.3" IC 74LS374 TTL 20/0.3' IC 74HC138 CMOS 16/0.3" IC 10C (PLSTC) RISC OS ROM 1 V2.0 RISC OS ROM 2 V2.0 RISC OS ROM 3 V2.0 RISC OS ROM 4 V2.0 IC 74HC574 CMOS 20.0.3" IC 74HC574 CMOS 20.0.3"	1 1 1 1 1 1 1 1 1 1	LK31 PL 1 PL2 PL3 PL4 PL5 PL6 SKI	0800,050 0180,013 0800,291 0800,203 0800,203 0803,102 0800,920	CONR 2W WAFR 0.1" ST PCB EARTH STRAP {PCB/PSU} CONRD 9W PLG RAPCB+RFI+LI FSTN TAB 6,3mmx0,8 ST PCB FSTN TAB 6,3mmx0,8 ST PCB CONR 34W BOX IDC LP ST CONR 9W MINDIN RA PCB	1 1 1 N/F 1
IC20- IC27 IC28 IC29 IC30 IC31 IC32 IC33 IC34 IC35 IC36 IC37 IC38 IC39 IC40 IC41 IC42 IC43	0704,118 0747,139 0747,573 0747,573 0747,573 0747,573 0747,139 0747,000 0740,016 0740,016 0740,016 0740,016 0770,386 0770,386 0770,386 0770,324 0750,086 2201,367 0749,573 0747,573	IC DRAM 256Kx4 120n 20ZIP IC 741HC139 CMOS 16/0.3" IC 74HC573 CMOS 20/0.3" IC 74HC573 CMOS 20/0.3" IC 74HC573 CMOS 20/0.3" IC 14HC573 CMOS 20/0.3" IC 74HC573 CMOS 20/0.3" IC 74HC00 CMOS 14/0.3" IC 74HC00 CMOS 14/0.3" IC 74HC00 CMOS 14/0.3" IC 74HC TTL 14/0.3" (OPTION) IC 1772 FDC 28/0.6' IC ARM Rum PLSTC) IC LM386 AUDIO AMP IC T4AC86 CMOS 14/0.3" IC 74AC86 CMOS 14/0.3" IC 74HC573 CMOS 20/0.3"	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SK2 SK3 SK5 SK6 SK7 SK8 SK10 SK11 SK12 SK13 SK13 SK16 SK16 SW1	0800,004 0800,487 0800,487 0800,487 0800,481 0801,202 0801,202 0800,486 0800,293 0800,487 0800,642 0800,642 0800,641 0800,292 0800,411 0800,476	CONR SW SKT DIN RA PCB CONR 17W SKT 0.1" PCB CONR 17W SKI 0.1" PCB CONR 5W SKT HSNG 0.1" PCB CONR 20W 0.1" FLXPCB SKT CONR 20W 0.1" FLXPCB SKT CONR 5W SKT 0.1" PCB CONR 5W SKT 0.1" PCB CONR 17W SKT 0.1 TCB CONR 20W WAFR 0.1 ST 10mm SW 2P MOM CO P/B RA PCB	1 1 1 1 1 1 1 1 1 1 1 1 1 3
IC44 IC45 IC46 IC47	2201,375 0749,573 0747,573 0747,004	IC MEMC 1 A (PLSTC-8MHz) IC 74HCT573 CMOS 20/0.3' IC 74HC573 CMOS 20/0.3" IC 74HC04 CMOS 14/0.3"	1 1 1 1	X1 X2 X3	0820,019 0821,327 0820240	XTAL 1.8432MHz HC18 XTAL 32.768KHz CC 0.05' XTAL 24.00MHz HC18	1 1 1

2Mb RAM upgrade

Item	Part no.	Description	thy
1 2 3	0280,200 0180,200/A 0180,200/C	BARE PCB ASSEMBLY DRAWING CIRCUIT DIAGRAM	1 1* 1*
C 1- C8 C9 C10	0680,102 0635,470 0635,470	CPCTR DCPLR 100n AXA 25V CPCTR 47u ALEC 16V RAD CPCTR 47u ALEC 16V RAD	8 1 1
IC1- 1C8	0704,118	IC DRAM 256Kx4 120n 20ZIP	8
SK1 SK2 SK3	0800,488 0800,488 0800,488	CONR 20W SKT 0 . r RA PCB CONR 20W SKT 0.1" RA PCB CONR 20W SKT 0.1" RA PCB	1 1 1

per batch

User Port MIDI upgrade

Item	Part no.	Description	Qty
2 3 6 9 11	0180,300/A 0180,300/C 0280,360 0800,128 0884,042	ASSEMBLY DRAWING CIRCUIT DIAGRAM PCB REAR PANEL SKT IC 28/0.6" NORM RIVET POP DOME 3,2D & THK (USE ON ITEM 6)	1" 1* 11C3 2
L1 - L18	0500,000	RES <i>ze</i> RO R 0W25	18
R1 R2 R3 R5 R6 R7 R8 R10 R11 R12	0502.222 0502.221 0502.221 0502.221 0502.221 0502.221 0502.222 0502.222 0502.222 0502.221 0502.221 0502.103 0502.103	RES 21(2 C/MF 5% 0W25 RES 21(2 C/MF 5% 0W25 RES 220R C/MF 5% 0W25 RES 220R C/MF 5% 0W25 RES 220R C/MF 5% 0W25 RES 1K0 C/MF 5% 0W25 RES 2K2 C/MF 5% 0W25 RES 2K2 C/MF 5% 0W25 RES 2DR C/MF 5% 0W25 RES 10K C/MF 5% 0W25 RES 10K C/MF 5% 0W25	1 1 1 1 1 1 1 1 1 1
C1 C2- C8	0635,230 0680,002	CPCTR 220u ALEC 16V RAD CPCTR DCPLR 33/47n 0.2"	1 7
IC 1 IC2 IC3 IC4 ICS IC6	0706,525 0799,504 0280,320 0740,006 0732,691 0747,139	IC 65C22 VIA CMOS 2MHz OPTO ISOL 6N138 8/0.3" ROM (0727,128/9 TBP) IC 7406 TTL 14/0.3" IC 2691 UART CMOS 24/0.3" IC 74HC139 CMOS 16/0.3"	1 1 1 1 1
D1	0794,148	DIODE 1N4148 SI	1
LK 1- LK4			N/F
SK1 SK2 SK3 SK4 SK5 SK6	0800,009 0800,004 0800,004 0800,004 0800,475 0800,475	CONR 20W HDR IDC RA 4WALL CONR SW SKT DIN RA PCB CONR 5W SKT DIN RA PCB CONR 5W SKT DIN RA PCB CONR 17W WAFR 0.1 23,5mmL CONR 17W WAFR 0.1 23,5mmL	1 1 1 1 1

• per batch

Appendix A: Serial port loopback plug

Serial port loopback plug

° hole

* components join above the board surface

Parts list*

ltem	Part no.	Description	Qty
1 3	0276.081 0800,288	CIRCUIT 8 ASSEMBLY DRAWING CONR 9W SCKT 'D' ST MS SB	1'
R1 R2 R3 R4	0502,122 0502,122 0502,122 0502,122 0502,122	RES 1K2 C/MF 5% 0W25 RES 1K2 C/MF 5% 0W25 RES 1K2 C/MF 5% 0W25 RES 1K2 C/MF 5% 0W25	1 1 1 1
R5 R6 R7 R8	0502,472 0502,472 0502 472	RES 4K7 C/MF 5% 0W25 RES 4K7 C/MF 5% 0W25 RES 4K7 C/ME 5% 0W25	1 N/F 1 1
D1 D1	0790,085 0790,085	DIODE BAT85 SBL DIODE BAT85 SBL	1

per batch

Assembly notes

Assemble the components onto 'Veroboard', and fit item 5 (the shell) to protect the assembly

Appendix B: Earth continuity testing

Equipment required

An earth continuity tester capable of sourcing 25A derived from an AC source with a no-load voltage not exceeding 12V.

It is recommended that the calibration and operation of the instrument be checked frequently enough to assure its accuracy.

Test Procedure

DANGER

THE FOLLOWING TESTS INVOLVE HIGH CURRENTS BUT LOW VOLTAGES. ALL NECESSARY PRECAUTIONS MUST BE TAKEN TO ENSURE OPERATOR SAFETY DURING TESTING.

DANGER

SWITCH OFF THE COMPUTER, DISCONNECT IT FROM THE MAINS SUPPLY, AND DISCONNECT ANY PERIPHERALS BEFORE CARRYING OUT THIS TEST.

The test should be performed on a fully assembled computer.

Using the Earth continuity tester, check the continuity between the power supply cord 13A plug earth pin and the following points:-

1 the rear panel internal expansion card fixing screws

2 both printer/parallel port D-type fixing bolts.

The resistance measured between the earth pin and

each of the above test points shall not exceed 0.15 a This value includes an allowance for the resistance of the mains cable. The duration of each test shall not exceed 10 seconds. No waiting period between tests is necessary.